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Towards a Theory of Analytic Functions

Section 7 is still rather a mess but it is getting clearer. Sections 10 and
following are just bits and pieces that are mostly probably not needed.

Abstract

Multivalued analytic functions (or relations) are defined as mappings
of the Riemann Sphere to itself that satisfy the Cauchy-Riemann equa-
tions, and are not constrained by artificial boundaries or constraints on
values. They are believed to be determined uniquely by their behaviours
at all their singular and inversion points, which is a generalisation of a
result of the previous study of the algebraic case. The behaviour at
these points is determined by simple equations that only make sense in
the context of multivalued functions and can describe behaviour near
essential singular points as well as simple poles and branch points as-
sociated with algebraic functions. Many examples are discussed. It
is suggested though not yet proved that the set of analytic functions
forms a large algebraic structure that is closed under the operation of
taking limits in addition to the operations that give closure to the set
of algebraic functions.

The approach will be intuitive and non-technical showing how to
handle multi-valued functions in calculations and the topological prop-
erties of the surfaces representing them.
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1 Introduction

This document is a work in progress. As such it is incomplete and still has
errors and omissions. When brought to a state where I cannot easily find any
improvements it will form my next document on Complex analysis. Now it
looks as if there are going to be so many ideas that I can’t just finish it as a
paper, it is instead a sort of discussion document.

A strange feature of this study is that as it develops sections get expanded
with different material so the section headings get out of date, and it is not
easy to get the ideas in the most sensible order and keep it that way. The
structure is still obviously not right. Thus there are many places where
there are forward references. Comments are welcome. Please send them to
john.h.nixon1@gmail.com (see also https://www.bluesky-home.co.uk for my
other papers and ideas)
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The key differences between this approach and the standard approach to
analytic function are (1) Basing all the arguments on the closure of the com-
plex plane C (the Riemann sphere) instead of the complex plane C. (2) The
different definition of singular points based on topology. (3) The treatment of
mappings C → C as multivalued functions without restricting their domains.
This requires a different interpretation of equations which usually involve sin-
gle valued quantities.
My earlier work on algebraic functions when considered as multivalued func-
tions z → w where z and w are in the Riemann Sphere C ∪ {∞} = C seemed
to indicate that their topology determines them uniquely apart from a few
parameters. The topology of something is all the properties of it that are not
changed by any continuous stretching without breaking and has been described
as rubber sheet geometry. More precisely, algebraic functions are determined
by the behaviours of these functions at their singular points and their locations.

The main theme of this paper is to investigate how this extends to “ana-
lytic” functions C → C that can be multivalued. The precise definition of this
is not yet clear but the symbol A will be used for the set of functions con-
cerned. The topological definition of a singular point used in my earlier paper
[2] has been replaced by an equivalent analytical one. With multivalued func-
tions, equations involving them have to be treated differently. Many examples
are studied then some general theory is developed. Treating them like equa-
tions for single-valued quantities results in equations satisfied by the common
singular points for their solutions. The complete set of singular points almost
determines an analytic function uniquely. The idea of the special solution of
an equation arises that has the minimum number of singular points.

Apart from the above, the notion of a singular point is slightly changed
from my earlier work: the very special function f : z → 1/z that motivated
the introduction of the point ∞ described in [2] (the Riemann Sphere) so as
to make it left-unique as well as right-unique, is now not considered to have
a singular point because of this. The point (0,∞) is now called an inversion
point of f().

Another important theme, though not yet fully developed, is that func-
tions in A form a very complex algebraic structure that extends the algebra
of algebraic functions in [2] by adding to it extra closure operations i.e. the
passage to the limit of a sequence of such functions, and the solutions of equa-
tions of any type. This allows differentiation and integration to be included. If
something like induction could be done it might provide another way to prove
propositions.

The [4] says ‘Each analytic function is an “organically connected whole”,
which represents a “unique” function throughout its natural domain of exis-
tence.’ and I think this is the approach that should be followed.

Functions in A are in general multivalued (i.e. are relations) and therefore
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the general theory of relations must play a major role. Specifically, the concept
of ≻ on functions in A which could be read as “could start with” for example
the function given by sin(z6) could be defined starting from z2 or from z3 and
then applying another function A. This has its origin in relations generally,
and for this reason some of its basic properties needed to be established before
applying them to functions in A. The layout of the paper is as follows:

Notations and terminology including concepts from relations on an arbitrary
set
A description of the closure operations with examples
A motivating very simple example of the equation mentioned above
A look again at algebraic functions and characterising power functions
Examples of functions in A and characterising their singular and inversion
points
Properties of singular points
Solutions of equations and special solutions

1.1 General notations and terminology for relations

Relations generalise the concept of a mapping or function to the multivalued
case. For an arbitrary set S a relation on S is a subset of S × S. It will be
useful to collect a few results, terminology, and notations involving relations
here. The usual logical symbols ̸ (typed over what it applies to) or ¬,∀,∃,∈
,∧,∨,⇒,⇔mean “not”,“for all”,“there exists”,“in”,“and”,“or”,“implies”, and
“if and only if” respectively. The Boolean values 0 representing “false” and
1 representing “true” will be used throughout and the following equivalences
occur frequently

A ∨B = 0 ⇔ A = 0 ∧B = 0
A ∧B = 0 ⇔ A = 0 ∨B = 0
A ∨B = 1 ⇔ A = 1 ∨B = 1
A ∧B = 1 ⇔ A = 1 ∧B = 1

(1)

for any Boolean variables A and B. Note that equality of relations is the same
as logical equivalence often written as ⇔.

A relation R is left-total if ∀b ∈ S {∃a ∈ S[aRb]} and likewise right-total if
∀a ∈ S {∃b ∈ S[aRb]}. R is left-unique if ∀a1, a2, b ∈ S[(a1Rb ∧ a2Rb) ⇒ a1 =
a2] and likewise right-unique if ∀a, b1, b2 ∈ S[(aRb1 ∧ aRb2) ⇒ b1 = b2]. These
meaning of these four terms seem to me to be immediately clear. The relation
R is right-unique respectively left-unique ⇔ R−1 is left-unique respectively
right-unique, and likewise R is right-total respectively left-total ⇔ R−1 is
left-total respectively right-total. These terms replace the older terms: “one-
to-one”, “single-valued”, “serial”, “surjective” and “onto”.
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Apart from the operations of Boolean algebra that apply to all sets, exten-
sive use will be made of composition (denoted by juxtaposition) and inversion.
The composition of R1 with R2, R1R2 is defined by

∀a, b ∈ S[aR1R2b ⇔ ∃c ∈ S[aR1c ∧ cR2b]]. (2)

Note this is the logical order and corresponds (in the case of functions) to do
R1 then do R2 i.e. R2(R1(x)). Then it follows that composition is associative
and can be used to define the nth compositional power of a relation R for
non-negative integers by R0 = I (the identity relation I is defined by ∀a, b ∈
S[aIb ⇔ a = b]), R1 = R, and Rn+1 = RnR and extend it to negative integers
to give R−n which is defined to be (R−1)n = (Rn)−1 which is also easily shown
where the inverse of R written as R−1 is defined by ∀a, b ∈ S[aRb ⇔ bR−1a].
(Note the corresponding operation for functions is written with an o before the
integer exponent to distinguish this from the usual exponents, but this is not
needed in the context of relations on an arbitrary set S. In case of confusion
I will put the o back in).

Next follows two results that relate left-uniqueness to composition.

Lemma 1.1. If R1 is not left-unique and R2 is left-total then R1R2 is not
left-unique.

Proof. If R1 is not left-unique then

∃a, b, c ∈ S[a ̸= b, aR1c, bR1c].

Also if R2 is left-total then

∀e ∈ S[∃d ∈ S[eR2d]],

so choose e = c then there exists a, b, c, d such that aR1c, bR1c, cR2d and a ̸= b
so aR1R2d and bR1R2d so R1R2 is not left-unique.

Lemma 1.2. If R1 is right-unique and R1 is right-total and R2 is not left-
unique then R1R2 is not left-unique.

Proof. R2 is not left-unique i.e.

∃a, b, d ∈ S[a ̸= b, aR2d, bR2d]

and R1 is right-total i.e.

∀f ∈ S[∃e ∈ S[eR1f ]],

so choose f = a then
∃e1 ∈ S[e1R1a]
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and choose f = b then
∃e2 ∈ S[e2R1b]

so e1R1R2d and e2R1R2d. But if R1 is right-unique

∀a, b, c ∈ S[(aR1b, aR1c) ⇒ b = c]

so if e1 = e2 then a = b which is not true therefore e1 ̸= e2. This shows that
R1R2 is not left-unique.

By introducing the inverses of these relations, equivalent results can be
obtained.

The empty relation where R = ∅ satisfies ∀a, b ∈ S[¬aRb] and similarly
∀a, b ∈ S[aRb] defines the total relation 1 and the negation symbol will also
be applied to relations giving their complement so that R ∪ ¬R = 1 and
R ∩ ¬R = ∅. The following properties hold (R1 ∪ R2)R3 = R1R3 ∪ R2R3.
(R−1)−1 = R, (R1R2)

−1 = R−1
2 R−1

1 . There is a general relation on relations I
denoted by ≻, that has a simple definition based on composition,

R1 ≻ R2 ⇔ ∃R3[R1 = R2R3] (3)

and could be read as “is more or equally complex as” or “can start with”,
which will probably not be clear until analytic functions (that actually are
relations) are discussed. Its inverse could be denoted by ≺ means “is simpler
or equally complex as”. Any relation R satisfies

R ≻ I (4)

even if R is the empty relation ∅, and ∅ ≻ R for any relation R. It is clearly
reflexive (R ≻ R) and transitive i.e. (R1 ≻ R2) ∧ (R2 ≻ R3) ⇒ (R1 ≻ R3).

1.2 Functions on the Riemann Sphere

This is an attempt to extend the treatment from what I defined as algebraic
functions on the Riemann Sphere to all such functions in some sense.

In [2] the point ∞ was added to the complex plane to get the Riemann
Sphere so that functions always have a value. This works for algebraic functions
where continuity and differentiability hold for a function f() even if f() and
its derivative go to ∞ there for example z → z−p/q for p, q ∈ N, q ̸= 0 at z = 0.
However this does have some unusual consequences for example z → exp(1/z2)
at z = 0 which is 0 and ∞ because exp(∞) is 0 and ∞ (this follows from
ez = exeiy if z = x + iy where if x and y approach ∞ with x/y is constant,
the result is 0 if x → −∞ and ∞ if x → ∞, ∞ and −∞ are the same
point approached from opposite directions). These are examples of essential
singular points for non-algebraic functions where the number of terms in the
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series about the singular points is infinite (Laurent series for finite singular
points and power series for singular points at ∞).

Next follows a result that seems so fundamental that it should be perhaps
mentioned here. It is connected with the completion of the complex plane to
the Riemann Sphere C and although I am probably not able to express or prove
it properly, I present it as a theorem. Consider a function in A f : C → C
with a single singular point at z0 and a circuit described in z that is close to
z0 in C. The image of this not a circuit in f(z) that is described just once in
the same direction. Suppose there are no other singular points in f() then this
can be continuously deformed past ∞ without changing the discrete topology
to a small circuit in z at some other point z1 with a corresponding image in
f(z) where again the result is not a circuit described just once in the same
direction. This small circuit in z can be made as small as you like while not
crossing any singular or inversion point with the same result, and this would
imply a singular or inversion point at z1 ̸= z0 of the corresponding type. This
contradiction proves that

Theorem 1.3. An function in A defined on the Riemann Sphere C cannot
have only one singular or inversion point.

Roughly this includes is any function, single or multivalued, that can be
expressed by a formula that does not involve splitting the complex variable
z into parts e.g. real and imaginary or modulus-argument etc. or is the
solution of any problem defined using calculus involving such functions. See
the closure operations below. They are differentiable and therefore infinitely
many times differentiable in the extended sense (including ∞) wherever they
are defined. They have no boundaries. The main difficulty with my approach
compared with the standard approach to complex analysis is how to deal with
multivaluedness. They are generally multivalued which can cause confusion as
the examples show. This also affects how equations involving these functions
are handled. Such equations frequently characterise singular points which is
a major theme. There are closure operations that generate new functions
from old ones and they start from the constant function and being infinitely
differentiable i.e. analytic, so this term is used. The phrase analytic relations
could be used because they can be multivalued, but I will stick to using the
term analytic functions because of its common use. The term “analytic” is
used because these functions in A will be closely related to complex analytic
functions as this term is usually used.

The function exp() plays a very special role. It uniquely satisfies exp(0) =
1 and exp′(z) = exp(z). It satisfies exp(z) = the positive real value of ez

whenever z ∈ Z and e is the base of natural logarithms, and exp(x) is equal to
the positive real value of ex for other real x and is ex(cos(y) + i sin(y)) when
z = x + iy thus there is a distinction between ez and exp(z) with only the
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former being multivalued for non-integer and finite values of z. However due
to the common usage that these are the same, if there is not likely to be an
ambiguity ez will be used when more properly exp(z) should be used.

Together with its inverse ln(), exp() can be used to define the general
exponent function by

ab = exp(b ln(a)). (5)

To show that this in general has the correct number of values (q where
b = p/q and gcd(p, q) = 1 i.e. p/q is in the lowest terms possible, with
p ∈ Z, q ∈ N, q > 0), let n ∈ N with 0 ≤ n ≤ q − 1. Upon dividing
np by q let np = sq + r where r ∈ N and 0 ≤ r ≤ q − 1, and s ∈ Z.
n1p mod q = n2p mod q ⇒ (n1 − n2)p = tq where t ∈ Z. From this it follows
that q|(n1 − n2)p and because q ∤ p it follows that q|(n1 − n2) so n1 = n2

because n1 and n2 are in the range 0 ≤ n1, n2 ≤ q − 1 and |n1 − n2| ≤ q − 1.
Therefore the mapping k() defined by k : n → np mod q is left-unique and
generates a permutation of the integers Q = {0, 1, . . . q − 1}.

Therefore the fractional part of {np/q} for n ∈ Q is {n/q} for n ∈ Q in a
different order and the sets exp(2πinp/q) and exp(2πin/q) where n ∈ Q are the
same but appear in a different order. Therefore the set of values of exp(b ln(a))
for one particular value of ln(a) is exp(p

q
(ln(a) + 2πin)) where b = p/q and is

exp(p
q
ln(a)) exp(2πinp/q) = exp(p

q
ln(a)) exp(2πin/q) therefore the expression

exp(b ln(a)) has all q values and no others and can be used to define ab.
A peculiar consequence of dealing with multivalued expressions is an ambi-

guity that can arise when doing calculations that involve them. Consider the
following paradox which is probably one of the simplest examples of its kind:

eiπ = −1 ⇒ 2πi = 2 ln(−1) = ln((−1)2) = ln(1) = 0! (6)

While forgetting that ln() is multivalued it is too easy to carry out calculations
like this and arrive at absurd conclusions. If for each instance of ln() it is
remembered that any multiple of 2πi can be added to a result to give another
value of the function, the following results are obtained:

2 ln(−1) = 2(πi+ 2n1πi) = 2πi(1 + n1)
ln((−1)2) = 2n2πi

(7)

which are the same where n1, n2 are arbitrary integers. The logic is faulty
in (6) where a multivalued expression is treated as a single value. Consider
the generalisation ln(ab) = b ln(a). If b ln(a) represents one particular value of
this multivalued expression, the complete set of values can be written as using
2πin1 + b(ln(a) + 2πin2) i.e. b ln(a) + 2πi(n1 + bn2) for all n1, n2 ∈ Z where
the expression 2πin1 can be added because it is the ln of something and the
expression 2πin2 can be added because ln(a) is multivalued in the same way.
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Therefore the complete set of values of b ln(a) can be written as

b ln(a) + 2πi(n1 + bn2) = b ln(a) + 2πi

(
qn1 + pn2

q

)
. (8)

where b = p/q and p and q can be chosen to be coprime, so the numerator
in the parenthises can be 1 by appropriate choice of n1 and n2, therefore it
can be any integer by multiplying both n1 and n2 by that integer and thus
exp(b ln(a)) has the q distinct values it should have. If 2πin1 had not been
added, so that n1 = 0, pn2 can be divided by q to obtain integers r and s such
that pn2 = rq + s where 0 ≤ s < q then (8) would have been

b ln(a) + 2πi(r + s/q) (9)

and s would have still attained all its values because of the following theorem
in [3]:

Theorem 1.4. If a, b, c ∈ Z then the equation ax + by = c has a solution
for x, y ∈ Z if and only if the greatest common divisor of a and b divides c.

Therefore there is no problem with the multivalued nature of ab if b is
rational except if the exponent is regarded as a repeated multiplication when

b is an integer. For example consider the expression
(

1
2
+
(
9
4

) 1
2

)b
. The inner

expression has values -1 and 2, so taking all possible values gives (−1)k2(b−k)

for 0 ≤ k < b whereas just the values (−1)b, 2b should occur. A related example
is what are the values of 11/2 + 11/2 = (±1) + (±1)? If these two instances
have to be the same the result is ±2 otherwise 0 can be included. The general
principle it seems to me is to take note of when two or more instances of the
same multivalued expression occur in a formula have a common origin then
they have to have the same value, otherwise they are independent.

2 Defining the algebra of functions

The set of algebraic functions as defined in [2] includes the constant functions
z → c for any c ∈ C and is closed under the following unary and binary
operations on functions: union, composition, inversion, addition, subtraction,
multiplication, division, differentiation with the exception that the inverse of
the constant functions do not exist. The identity function z → z obtained
by integrating the constant function equal to 1. The subtraction operation is
merely the addition of a negative and so is not strictly required. The inclusion
of division is needed to ensure that the special function z → 1/z is included.

The arithmetic operations just refer to the operations f(z) = g1(z) ∗ g2(z)
for defining f() in terms of g1() and g2() where g1() and g2() are functions in
A, then so will f() where ∗ is +, −, × or ÷.
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The absence of integration as a closure operation for algebraic functions
suggests the extension of these ideas to include it as an operation that gives
closure. This requires the familiar functions ln() as the integral of 1/z and its
inverse exp() to be included.

However including instead the limit of a sequence of functions can replace
including derivatives and integrals. Then differentiation does not need to be
included as a closure operation because a derivative is the limit

f ′(z) = lim
h→0

f(z + h)− f(z)

h
(10)

of a difference that is already included. Also an integral is just the limit of a
sum ∫ z

a

f(t)dt = lim
n→∞

{
1

n

n−1∑
i=0

f [a+ i

(
z − a

n

)
]

}
(11)

which is already included.

It is also desirable to include all functions that are definable as solutions to
equations of any type such as differential equations, integro-differential equa-
tions, difference equations. There are some examples later in the paper.

Therefore the closure operations involved the set of functions in A are as
follows:

• union (∪) i.e. from a set of functions, their union is found i.e. the graph
of the union is just the set-theoretic union of the graphs of the separate
function.

• composition and inversion (o or juxtaposition,o−1 )

• the four arithmetic operations (+,−,×,÷)

• taking the limiting value of a sequence of functions

• solution of equations needs to be as general as possible and must include
obtaining the special solution for f() from g1() in (29) and obtaining the
special solution for f() from g2() in (30).

I was hoping that something like a universal base for computability might
arise if this algebra could be made complete and correct.

Closure is a very attractive concept because it is possible to prove a propo-
sition for every element of the algebra by a kind of induction by proving it for
an initial set of special elements and proving that for every closure operation,
it holds for the result of the closure operation if it holds for the elements to
which the closure operation is applied. In this case if P is any proposition true
for all elements of the algebra if and only if P is true for the special elements
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(the identity and constant functions).

P [f1()] ∧ P [f2()] ⇒ P [f1() ∪ f2()]
P [f()] ⇒ P [f()o−1]
P [f1()] ∧ P [f2()] ⇒ P [f1(f2())]
P [f1()] ∧ P [f2()] ⇒ P [f1() ∗ f2()] where ∗ = +,−,×,÷
∀i ∈ N{P [fi()]} ⇒ P [limi→∞ fi()]
P [f()] ⇒ P [S[f()]]

(12)

The first three involve only sets and relations. The limit operation allows
all operations of calculus to operate within this algebra. Finally the solutions
of equations includes simultaneous equations of any type and of course all these
should be interpreted recursively so eg any equation involving given functions
that are defined as above has solutions that are to be included etc.

Note that the limit of a set of continuous functions can be discontinuous in
the real domain (Fourier series provide many examples), and this extends to
evaluating a function in A on a path in C that goes through a singular point
that arises as a result of the limit taken.

Functions in A with a line of discontinuity can be extended i.e. analytic
continuation ([1] Chapter 12) can be applied to extend the function on both
sides of the boundary resulting in a multivalued function where this line of
discontinuity is removed.

The obvious step is to define composition and inversion as for binary re-
lations in general. This gives rise to compositional powers of functions eg
f(f(z)) = f o2(z) defined as for relations in general. The symbol o is used to
indicate the compositional power that follows it because o is sometimes used
to indicate composition, and this distinguishes the inverse of a function from
its reciprocal.

When working with multivalued functions, the equivalent of the function
value is now a set of values and equality between relations is of course the
equality between the two sets of values. This has consequences when manipu-
lating equations with multi-valued functions in A.

Perhaps this simplest closure operation is that of union. A union is simply
the union of the two sets of pairs (z, w) defining each of the functions in the
union. The concept of a union was not mentioned much in my previous paper.
The simplest example of a union is when f(z) = (z2)1/2 which is the union of
z and −z which consists of pairs (z, z) and (z,−z) for all z in C.

Suppose a single component function in A maps p values each to the same
q values ∈ C. Does every single component function in A have to be like this,
with p or q allowed to be ∞? In the two set of values, each member of a set
is equivalent to any other member.

An function f() in A has a single component if and only if for every pair of
points P1 and P2 in C×C in the graph of f() there is a continuous and analytic
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curve starting at P1 and ending at P2 at each point being in the graph of f()
and not including any singular point of f() i.e. every such point is connected
not via singular points to every other such point within the graph of f().

Related to “union” is the concept of a component. A component will be a
single analytic surface i.e. a function in A that itself could be multivalued. The
number of components an function inA has will be an important property of it.
Generally, only solutions of equations which consist of a single component are
likely to be of interest. If a set of single components each satisfy an equation of
the type considered here, then so does their union. Unless otherwise stated an
arbitrary function will refer to a single component. The operation of extracting
all the components from a union will probably be needed.

An function in A can be a union of smoothly differentiable components
that each consist of a single continuum of points (z, f(z)) ∈ C × C provided
there is an extension of the notion of differentiation from C to C. Finite and
countable unions will surely be needed.

Singular points specified by (z, f(z)) are points in the analytic surface where
a small circuit round z is not mapped into a small circuit round f(z) in the
Riemann Sphere. Another way to say this is that a singular point (z, f(z)) is
any point about which for all neighbourhoods N of (z, f(z)) in C×C however
small, the graph of f() intersected with N is not topologically equivalent to
an open disk. In such a case one value of z will correspond to more than one
value of f(z) or vice versa in N , see Section 6. Importantly, singular points
are not to be confused with points where f(z) is ∞ though these may often
coincide. Definition: A singular point at (z, w) is finite iff z ̸= ∞.

3 A simple example

Consider about the simplest example of an equation

f(z) = f(−z) (13)

for a right-unique function f(). This is satisfied by f1(z) = z2 and by f2(z) = z4

and in fact any function of z2. This suggests that the solution f(z) = z2 has
special significance and will be called a special solution.

Equation 13 can be written as z1 = −z2 ⇒ f(z1) = f(z2). Suppose the
condition 13 is required to be an inequality unless equality is explicitly required,
then in the above case

f(z1) = f(z2) ⇔ z1 = ±z2. (14)

This strengthened condition eliminates z4 from being a solution because then
f(z1) = f(z2) ⇔ z1 = ±z2 or z1 = ±iz2 but the special solution of (13) does
satisfy (14).
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Singular points are defined to be points P = (z1, w1 = f(z1)) where the
function f() is not behaving on any very small length scale surrounding P as
a simple one to one correspondence. Thus a singular point is defined such
that the function is not locally 1 to 1 there. Then minimising the number of
singular points requires f() to be locally 1 to 1 wherever possible. In this case
it is not possible to have f(z1) = f(z2) ⇔ z1 = z2 (which would imply no
singular points anywhere) because of (13), but (14) is next best because the
possible arguments (and singular points) have to be treated in pairs (z,−z).

The condition for the absence of a singular point at P is that for some
neighbourhood N of P

z1 = z2 ⇔ f(z1) = f(z2), (15)

holds for all ((z1, f(z1)) and z2, f(z2) ∈ N . Using (14) this gives z1 = z2 ⇒
f(z1) = f(z2) ⇒ f(z1) = f(−z2) ⇒ z1 = −z2 which implies z1 = z2 = 0 or ∞.
Therefore the singular points in solutions of (14) are only at z = 0 and ∞
which is where z2 has singular points which shows that the number of singular
points for solutions of (13) has been minimised by using instead the condition
(14). Note Theorem (1.3) shows that no analytic function can have just one
singular point.

Now suppose f() satisfies 14, then introducing the function k() by k(z) =

f(z1/2) then (14) is equivalent to z1 = z2 ⇔ z
1/2
1 = ±z

1/2
2 ⇔ f(z

1/2
1 ) =

f(±z
1/2
2 ) ⇔ f(z

1/2
1 ) = f(z

1/2
2 ) ⇔ k(z1) = k(z2). Therefore the condition for

the absence of a singular point for the function k() holds everywhere. Therefore
k(z) = a+bz

c+dz
by Lemma 4.2 implying f(z1/2) = a+bz

c+dz
so f(z) = a+bz2

c+dz2
.

4 basic theory

Theorem 4.1. Every function f() ∈ A reaches every value f(z) ∈ C i.e.
is right-total for some z ∈ C unless f() is a constant function.

Proof. This follows from the corresponding property of algebraic functions
(P (z, w) = 0 always has a solution for z given w for any bivariate polyno-
mial P ) and the fact that functions f() ∈ A are continuous and are limits of
sequences of algebraic functions which are all continuous.

Closure under inversion requires every function in A to be left-total too.
An interesting case occurs if the point that is the solution of such an equation
approaches, under the limit, a singular point of the limit function. For example
if the limit function is f(z) = exp(1/z) and the solutions approach z = 0 as
would happen if w = 0. This works because f(0) is 0 and ∞ i.e. both these
values are attained by f().
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Lemma 4.2. An function in A with no singular points and no inversion
points is a linear function.

Proof. The absence of a singular point at z = ∞ for a function f() implies a
neighbourhood of∞ (a large circle in the complex plane but a small circle in the
Riemann Sphere) in z maps in a left-unique manner locally to a neighbourhood
in w say centred on w0 = f(∞). If w0 ̸= ∞ then 1/z ≈ a(w − w0) for very
large |z| therefore dw/dz = −1/az2 → 0 as z → ∞. Similarly if w0 = ∞
a small neighbourhood in 1/z about 0 maps to a small neighbourhood round
1/w at 0 so 1/z ≈ b/w therefore dw/dz = b at (∞,∞) and if there are no
singular points and no inversion points anywhere in w(z) then dw/dz is also
everywhere finite and analytic there, so by Liouville’s theorem (see for example
[1]) dw/dz is constant so w = a+ bz where a and b are constants.

Theorem 4.3. A function in A with no singular points is a bilinear function
given by f(z) = a+bz

c+dz
.

Proof. Let f(z) = w be an function in A with no singular points. Then apply
a bilinear function b() to w such that b(f(0)) = 0, b(f(1)) = 1, b(f(∞)) =
∞. This can be done uniquely (see [1] section 33). Then by Lemma 6.6
b(f()) has no singular points and maps, 0 → 0, 1 → 1, and ∞ → ∞. Also
b(f()) can have no inversion point because if some finite point z0 → ∞ then
b(f()) would be not left-unique there and would have a singular point there
by Lemma 6.5 contradicting the assumption. Therefore b(f()) satisfies the
condition of Lemma 4.2 and must be a linear function i.e. b(f(z)) = α + βz
and f(z) = bo−1(α + βz) which is also a bilinear function.

The changed definitions of singular points and the new definition of an
inversion point require some well-known theorems to be rephrased.

This is because “analytic” in the textbooks should be replaced by “right-
unique analytic and finite” in the terminology of this paper. This would make
the statements of theorems like the Cauchy integral formula slightly more
cumbersome. Also “entire” means “right-unique, analytic, and without any
singular points except possibly at z = ∞”. If a function is bounded i.e.
|f(z)| < k for some k > 0 for all z ∈ C then by continuity, it cannot be ∞
at any point in C including at ∞ itself. Therefore Liouville’s theorem can be
expressed as

Theorem 4.4. If f() is right-unique in A, finite at every point z ∈ C and
without a singular point at any point z ∈ C then f() is constant ∈ C.

Now suppose that f() is right-unique, analytic and none of its values are
equal to w ∈ C at any point z ∈ C and f() has no singular points with z ∈ C.
Then 1

f(z)−w
is everywhere finite because f(z) cannot approach w arbitrarily
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closely (for otherwise at the limit point it would equal w and C is compact so
includes all its limit points) and analytic and has no singular points for z ∈ C,
then by Theorem 4.4, 1

f(z)−w
= c ∈ C, therefore f(z) is constant ∈ C. This

proves that

Theorem 4.5. Every right-unique function f() ∈ A without any singular
points where z ∈ C, reaches every value f(z) ∈ C for some z ∈ C unless f()
is a constant ∈ C.

5 Characterising singular points of algebraic

functions

There seems to be much repetition from the old paper here! [

The topology of an algebraic function clearly must involve the behaviour
at points that are not regular points where the behaviour is non-trivial. A
simple way to describe this is to imagine a small circle described around the
point (z0, w0) within the surface. Imagine it so small that no other points with
irregular behaviour are included. If this can be done it will have projections
down to both the z and w planes and if the circuit is complete ending where it
started, the projections will be circuits around z0 and w0 respectively described
p and q times, or for non-algebraic functions, either p or q may be infinite if
the corresponding circuit never joins up again. Such points (z0, w0) with either
p or q not equal to 1 are singular points and if p = q = 1 the point is a regular
or non-singular point. Another kind of thing that can happen is when (z0, w0)
is at the intersection of two or more surfaces, which again implies (z0, w0)
is a singular point. In general a singular point is where in a small region
surrounding it, the function surface(s) cannot be stretched so that it becomes
flat.

Using the methods I developed earlier [2] to locate singular points for
algebraic functions, suppose w = zp/q where p, q ∈ N then wq = zp and
P = wq − zp = 0 and ∂P/∂z = −pzp−1 = 0 ⇒ zp−1 = 0 which is false if
p = 1. If p > 1 then z = 0 and w = 0. Also ∂P/∂w = qwq−1 = 0 ⇒ wq−1 = 0
which is false if q = 1. Because ∂P

∂z
+ ∂P

∂w
dw
dz

= 0 these conditions are equiv-
alent to dw

dz
= 0 or ∞. If q > 1 then w = 0 and z = 0. Therefore all finite

singular points are at (0, 0) provided p > 1 or q > 1 with the transformation
w∗ = 1/w, z∗ = 1/z giving the other one at z∗ = 0, w∗ = 0 i.e. (∞,∞).
Now suppose p > 0 and q < 0 then the same argument gives that all singular
points are at (0,∞) or (∞, 0). In many examples of algebraic functions I have
studied, it is easy to miss a singularity with either z or w being ∞ in addition
to the finite singular points. It is later proved that no function in A can have
just one singular point. ]
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Consider f(z) = z1/p where p is an integer. Rather than describing this
behaviour simply by saying that it is expressed by a “winding number”, near
the branch point at z = 0, the idea is to relate f(z) to f evaluated at the “next”
branch of the function obtained by tracking f(z) continuously once round a
small circle surrounding z = 0 described in the anticlockwise direction until the
same point z is reached. This circuit in z will have to be described p times to get
back to the same value of f(z). This is because if f(z) = z1/p = r1/peiθ/p then
f(z)p = z = reiθ with 0 ≤ θ ≤ 2πp. Let g2(z) = e2πi/pz where p is a positive
integer. Then g2(f(z)) = e2πi/pr1/peiθ/p = r1/p(e2πieiθ)1/p = r1/peiθ/p = f(z)
i.e.

f(z) = e2πi/pf(z). (16)

In fact this equation, being an equation for a multivalued function, rep-
resents the equality of the two sets of values each being p in number, and
the equation generates a permutation of those p values. Equality of the sets
of values will be implied whenever an equality occurs between two multival-
ued expressions. This is a simple example of equations which now have to be
treated differently because the expressions are multivalued. This relationship
is a better way of describing this situation than in [2] because it just involves
the right-unique function g2() and no mention of topological concepts that are
not so easy to make precise. Thus equations involving multivalued functions
clearly cannot be treated as though the functions are right-unique and equa-
tions can be written down that would only have trivial solutions if they were
for right-unique quantities. For example from (16) one cannot simply deduce
that f(z) = 0 by subtracting f(z) from both sides and dividing by e2πi/p − 1.
Obviously it is the first of these that goes wrong. The reason is that there are
then two instances of f(z) on the left hand side and it is not clear that these
are the same one therefore f(z)−f(z) has to be the set of every possible differ-
ence between the values of f(z). Therefore likewise any binary operation with
the second operand being multivalued should be avoided because the results
are not likely to be useful. However, well chosen functions could be applied
to both sides of a multivalued equation and be more useful as the following
examples show.

The function f(z) = z1/p is clearly not the only solution of (16) (for example
f(z) = az1/p or f(z) = zq/p). Raising (16) to the power p gives the tautology
fp = fp so there is nothing that can be said about fp so every solution of (16)
is the pth root of some function in A regardless of its other singularities. This
could be written as f(z) = h(z)1/p for an arbitrary function h() is the general
solution of (16). Any such function has a p-fold branch point at all points
where f = h = 0, and satisfies (16) because (e2πi/p)p = 1. In fact the general
solution can be written as the following union {f(z).e2πij/p for 0 ≤ j < p}
which is (f(z)p)1/p. This obviously satisfies (16) and has p components in
general because each component is mapped to the next one by multiplying by
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e2πi/p. It could have fewer if some of them join to others. It is this example
that motivated the introduction of the concepts of a union and the components
of an function in A. A simple example is f(z) = z + 1 which is not a solution
of (16) because it is not the p-th root of an function in A. It is not the pth
root of (z + 1)p which is the union {e2πij/p(z + 1) for 0 ≤ j ≤ p − 1}. The
result of this can be written more succinctly as follows.

Lemma 5.1. Suppose a function f() ∈ A satisfies (16) for some p ∈ N
then this is equivalent to

f(z) = h(z)1/p (17)

for some function h() ∈ A.

In this context a concept arises, made precise later, which could be called
the special solution of an equation. The special solutions of (16) are solutions
fs(z) such that any other solution f(z) of (16) can be written as f(z) =
fs(h(z)), so fs(w) = w1/p. This term will always be italicised to indicate this
meaning. As will be shown later, the singular point(s) associated with an
equation like (16) is/are given by its solutions where this equation is treated
as an equation for a single valued quantity i.e. in this case where f(z) = 0 or
∞. Later it turns out that the special solutions can be parameterised by three
independent parameters or by a, b, c, d and are fs(z) = (a+bz

c+dz
)1/p. The absence

of extra singular points is required in fs() because if there was such a singular
point then this would result in a corresponding singular point in fs(h(z)) for
any h() without a singular point at the corresponding location i.e. for almost
every function h(). A similar result is the following

Lemma 5.2. If q ∈ N where q > 1 then

f(z) = f(e2πi/qz) (18)

for all z ∈ C for some function f() ∈ A if and only if

f(z) = h(zq) (19)

for all z ∈ C where h() is some other function in A.

Note: if the first step in computing h(z) is to apply z → z1/q, all q values
must be included, giving a result which is a union of q components.

Proof. Equation (18) implies all q values e2πij/qz for 0 ≤ j ≤ q − 1 have the
same value of f() and zq is the same for all these. Also the distinct sets
{z, e2πi/qz, e4πi/qz, . . . e(q−1)πi/qz} for all z ∈ C have the union which is C and
are disjoint. Thus any solution of (18) on the Riemann Sphere C is of the
form (19) and any function of this form satisfies (18) because f(e2πi/qz) =
h((e2πi/qz)q) = h((e2πi/q)qzq) = h(zq) = f(z).
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Again an argument motivating the concept of the special solution follows
which can be done easily by inverting (18) and its solution and defining the
inverse of the special solution of (16) to give the special solution of (18). In-
verting (18) gives (16) after renaming f o−1() as f() where p = −q. Therefore
its special solution includes fs(z) = z−q in the 3 parameter family, and there-
fore also fs(z) = zq. Any solution of (18) is the inverse of (17) which is h(zq)
after renaming ho−1() as h().

5.1 Examples

5.1.1 Example 1

Suppose f(z) = (z − z0)
q where q is a positive integer. Here the only finite

singular point is at (z0, 0). Introducing the variable s by s = z − z0, and f ∗()
by f ∗(s) = f(z) = sq then f ∗() satisfies (18). Therefore expressing this in
terms of f using the chain of equalities

f(z) = f ∗(s) = f ∗(e2πi/qs) = f ∗(e2πi/q(z − z0)) = f(e2πi/q(z − z0) + z0) (20)

i.e. f() satisfies

f(z) = f(g1(z)) where g1(z) = e2πi/q(z − z0) + z0. (21)

This relationship just involves the right-unique function g1().

5.1.2 Example 2

Suppose a multivalued function satisfies

f(z) = e2πi/pf(e2πi/qz) (22)

which is a combination of (16) and (18) where p, q ∈ N. It can also be reasoned
as follows: (22) is equivalent to f ∗(z) = f ∗(e2πi/qz) where now f ∗(z) = (f(z))p

or equivalently (by Lemma 5.2) f ∗(z) = h(zq) i.e.

f(z) = (h(zq))1/p (23)

for some arbitrary function h() ∈ A.

Suppose both (16) and (18) are satisfied. This is equivalent to both (17)
and (19) holding. Then in (17) h(z) must also be of the form h(z) = h1(z

q)
for some h1() ∈ A (if it was not then (19) could not hold). Then putting these
together gives (23) which is equivalent to (22) as above, and to both (17) and
(19). These equivalences can be written as
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Theorem 5.3.

f(z) = e2πi/pf(z) ∧ f(z) = f(e2πi/qz) ⇔
f(z) = h(z)1/p ∧ f(z) = h(zq) ⇔

f(z) = (h(zq))1/p ⇔
f(z) = e2πi/pf(e2πi/qz)

(24)

This suggests that in general there are two auxiliary functions for an equa-
tion in A like (22) to be denoted by fs1() and fs2() such that the general
solution to an equation such as (22) is fs1(h(fs2(z))) where h() is arbitrary in
A and the special solutions of (22) have this form with h() being a bilinear
function giving the form

f(z) =

(
a+ bzq

c+ dzq

)1/p

. (25)

where in this case fs1(z) = z1/p and fs2(z) = zq.
******** section checked to here 2025-04-19 ************
If there are other singularities, equations like (18) and (19) will not neces-

sarily be exact but only asymptotically correct as the corresponding singular
point is approached. For example in (25) if z = (−b/a)1/q+ ϵ then f(z) can be
expanded as a power series in ϵ in which terms higher than the first contribute
so that the asymptotic behaviour near ((−b/a)1/p, 0) is affected by the singular
point at (0, 0).

5.1.3 Example 3

The ideas in Equations (21) and (16) can be combined by considering the
solutions of

f(z) = e2πi/pf(e2πi/q(z − z0) + z0). (26)

Introducing the new variable s = z−z0 and the new function f ∗(s) = f(s+z0)
then (26) becomes

f ∗(s) = e2πi/pf ∗(e2πi/qs) (27)

whose general solution is f ∗(s) = (h(sq))1/p i.e. therefore the general solution
of (26) is f(z) = [h((z − z0)

q)]1/p.]
As would be expected (and is justified later) the singular point(s) of f()

are given by

1. where the argument of the p-th root i.e. h((z − z0)
q) = 0 or ∞

2. where (z − z0)
q is a singular point of h()

3. where z − z0 is a singular point of the q-th power function which is at 0
and at ∞ so z = z0,∞.
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For the case where h() is the identity function, the second singular point no
longer exists and the first and third of these singular points coincide at z =
z0,∞ and f(z) = (z−z0)

q/p and the winding number ratio is p : q in the earlier
description.

6 Definition and properties of singular points

In the examples above the precise definition of singular points and many prop-
erties they have, have been hinted at. In this section these are described in the
general context in which the function f() ∈ A is not necessarily an algebraic
function. In all these definitions, a neighbourhood of a point (z, w) ∈ C × C
is an open set containing (z, w) in the cartesian product topology.

These results depend on general properties of mappings right-unique versus
multi-valued, and left-unique versus many-to-one. These properties can be
defined such that they are local to a particular point as follows.

Definition 6.1. The function f() is locally left-unique at P = (z, f(z)) if
and only if there is a neighbourhood N of P such that for every pair (z1, f(z1))
and (z2, f(z2)) in N , z1 ̸= z2 ⇒ f(z1) ̸= f(z2).

and likewise

Definition 6.2. The function f() is locally right-unique at P = (z, f(z)) if
and only if there is a neighbourhood N of P such that for every pair (z1, f(z1))
and (z2, f(z2)) in N , f(z1) ̸= f(z2) ⇒ z1 ̸= z2.

Definition 6.3. f() has a singular point P at (z, f(z)) if and only if for all
neighbourhoods N of P there exists (z1, f(z1)) ∈ N and (z2, f(z2)) ∈ N such
that either [z1 ̸= z2 and f(z1) = f(z2)] or [z1 = z2 and f(z1) ̸= f(z2)].

A statement equivalent to definition (6.3) is to require this condition only
for all neighbourhoods intersected with a specified neighbourhood of P however
small it is. This makes it clearer that the condition is a local property of the
behaviour at P . This is the same as saying the condition that needs to be
satisfied for the absence of a singular point of the function f() at the point P ,
(z, f(z)) is that there exists a neighbourhood N of P such that

∀(z1, f(z1)), (z2, f(z2)) ∈ N [z1 = z2 ⇔ f(z1) = f(z2)] (28)

i.e. f() is left-unique and right-unique within N . This condition is very compli-
cated to work with. A simpler equivalent form can be derived from it roughly
as follows. Because there is no limit to how small the neighbourhood N can
be (except that it cannot consist of the point P alone having no size because
this is not an open set), one can write z1, z2 ≈ z because these can be made
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arbitrarily close to each other. By making N sufficiently small about P , the
condition in square brackets can be made to be true unless the number of solu-
tions of f(z1)−f(z2) = 0 within N is just one i.e. z1 = z2 at P and is more than
one in N other than at P itself. This is because a very small neighbourhood
N of P is then a single disc and so no more than one value of z2 can be within
N for a fixed z1 and satisfy f(z1) = f(z2). Therefore the whole condition for
the presence of a singular point at P is false unless the number of solutions
of f(z1) = f(z2) changes at P . This can happen in two ways first when P is
an intersection point of two surfaces in the graph of f() (whether in a single
component or not), and secondly when P is a point where the first derivative
f ′(z) is 0 or ∞ which prevents f() being one-to-one in an infinitesimally small
disc surrounding P . In the first case, to find the singular points (z1, f(z1)),
solve f(z1) = f(z2) and z1 = z2 simultaneously to find the non-trivial solu-
tion (it holds everywhere trivially) by first eliminating z2 and introducing f1()
and f2() as two branches of f() to get f1(z1) = f2(z1). This works provided
these equations are not consistent everywhere which would happen if f() was
left-unique and right-unique which would make f1(z) = f2(z) hold everywhere.
Curiously there may be a connection between these ideas because in the case
f(z) = z2, it gives 0 = f(z1) − f(z2) = z21 − z22 = (z1 + z2)(z1 − z2) giving
z1 = z2 as the trivial case, and the other case is when z1 + z2 = 0 also, so
z1 = z2 = 0, and (0,0) is the finite singular point (the other one is at (∞,∞)).
Therefore

Lemma 6.4. in definition 6.3 the location of the singular point(s) is de-
termined by (i) f ′(z) = 0 or ∞ or (ii) where any two of the analytic surfaces
for f() (called locally f1() and f2()) cross i.e. where f1(z) = f2(z). These are
the non-trivial solutions of z1 = z2 and f(z1) = f(z2) (they are trivially true
everywhere).

Lemma 6.5. A function f() has a singular point at P = (z, f(z)) if and
only if f() is either not locally left-unique there or f() is not locally right-unique
there.

Proof. It is only necessary to choose the neighbourhood that is the intersection
of the two neighbourhoods in definitions 6.1 and 6.2 and take the negation of
the result.

Lemma 6.6. Composition with a function h() that is in A and has no
singular point at a particular location implies that the singular/non-singular
status of f() is the same as that of h(f()) and f(h()) each at the corresponding
point of f().

This is obvious from the assumption that any h() ∈ A is a smooth function
and is locally one-to-one away from singular points.
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Definition 6.7. f() has an inversion point at (z, f(z)) if and only if f(z) =
∞.

It is possible for a singular point to also be an inversion point e.g. f(z) =
z−2 at z = 0. An example of an inversion point that is not a singular point
is f(z) = z−1 at z = 0 because this function is everywhere right-unique and
left-unique.

The definition used in my earlier paper on algebraic functions [2] includes
inversion points with the singular points, and inversion points were not con-
sidered as a separate category. The reason for separating them out is for
consistency in definition 6.3 that now works even if f(z) = ∞ where a neigh-
bourhood of ∞ is as would be expected on the Riemann Sphere i.e. a region
of the complex plane outside of a finite connected region defined by a single
boundary.

A topological argument involving moving f(z0) to ∞ where z0 is a singular
or inversion point suggests that the direction of traversal of f(z) round a circuit
surrounding (z, f(z)) (P ) is the same as that of the corresponding circuit z for
any point P in the graph of f() except when f(z0) = ∞ when it is reversed as
the result of this circuit crossing ∞.

The following results relate singular behaviour to the operations of inver-
sion, composition, arithmetic operations, and union.

Lemma 6.8. (z, f(z)) is a singular point of f() if and only if (f(z), z) is a
singular point of f o−1().

Proof. Lemma (6.4) makes this obvious.

For a very similar reason

Lemma 6.9. Combining a function in f() ∈ A with another function in
g() ∈ A without a singular point using ∗ will not alter the singular/non-
singular status of f() at the corresponding point where ∗ = +,−,× or ÷.

This result is obvious:

Lemma 6.10. the only singular points of a union that are not included in
one of the separate components is where at least two components intersect.

These are known as intersection singular points.

Lemma 6.11. If f(), h() ∈ A and f() is right-unique with a singular
point at (z1, f(z1)) then h(f()) is singular point at the corresponding point(s)
(z1, h(f(z1))).
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Proof. Consider a neighbourhood N of (z1, h(f(z1))). Then because of Theo-
rem 4.1, there is a corresponding neighbourhood N ′ of (z1, f(z1)) under map-
ping by ho−1(). Because f() has a singular point at (z1, f(z1)), there exists
(z2, f(z2)) and (z3, f(z3)) ∈ N ′ such that z2 ̸= z3 and f(z2) = f(z3). This
is because f() is right-unique so the second option in definition 6.3 is not
possible. Therefore there exists (z2, h(f(z2))) and (z3, h(f(z3))) ∈ N where
z2 ̸= z3 and h(f(z2)) = h(f(z3)). This works for any neighbourhood N imply-
ing h(f()) has a singular point at (z1, h(f(z1))).

This has a corresponding lemma obtained by inversion. Expressing every-
thing in terms of the inverse functions gives

Lemma 6.12. If f o−1(), ho−1() ∈ A and f o−1() is left-unique with a singular
point at (f(z1), z1) then f o−1(ho−1()) is singular point at the corresponding
point(s) (h(f(z1)), z1).

Then renaming f() and h() to their inverses and making other changes of
notation simplifies the presentation:

Lemma 6.13. If f(), h() ∈ A and f() is left-unique with a singular point at
(z, f(z)) then f(h()) is singular at the corresponding point(s) (ho−1(z), f(z)).

The importance of Lemma 6.11 is that it is not possible to remove a singular
point in a right-unique function in A e.g. z → z2 by applying another function
to the result. For example applying z → z1/2 gives the union z → ±z that has
an intersection singular point where these components coincide at (0, 0). The
condition that f() is right-unique is important, for example applying these
functions in the other order gives (z1/2)2 = z without any singular points.

7 Solutions of the equations (29) and (30) defin-

ing singular points and types of multivalued

functions

************** note to the reader of earlier versions: the roles of (29) and (30)
have been reversed, and g1() and g2() have been exchanged and the presen-
tation of the main theorems has been reversed to make the final presentation
look right eg g1() is introduced before g2() etc. *******************

************* this section is still under construction ***********
My earlier thoughts about equations such as (29) and (30) is that they

were just descriptions of the asymptotic behaviour of f(z) close to the relevant
singular point, but they can be equations that are satisfied exactly by certain
multivalued analytic functions.
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In the former approach, if there are other singular points whose behaviour
is specified in their vicinity, then I expect (50) will only asymptotically hold
close to the corresponding singular point. Such functions will not be solutions
of (50) except asymptotically close to the appropriate singular point. It is
interesting to consider how such functions might be constructed just from their
singular behaviour at these points. A possibility is linear combination (LC)
of the minimal i.e. special solutions for each separate singular point. This
LC will have precisely the asymptotically defined behaviours at the singular
points because all the other terms will not have a singular point at each of
them. This I think can perhaps be generalised to nonlinear combinations, if
the condition of minimality is dropped. i.e. find the general solution of a set
of simultaneous asymptotically defined functions about a set of singular points
as some arbitrary function in A of basic solutions to them singly?

For a multivalued single component function f() in A it is possible to have
a circuit in which the z value is returned to but w comes back to a different
value. That gives rise to an equation of type (81). As the circuit is reduced
in size, at some points the final value reached will suddenly change and will
eventually will suddenly equal the original value. It suddenly changes where
the curve crosses a singular point of which there can be many. The singular
point is where the two values of f() coincide. Having found all the singular
points and their associated equations relating the function values, it should be
possible to, by following any combination of the paths in any order allowing
repetition, to get from say (z1, w1) to any other point (z1, w) in the graph of
f(). This would indicate that all the equations of type (81) have been found.
It is possible (see for example (71)) that there is a pair (or perhaps more) of
singular points that are associated with the same transformation (81) or its
inverse.

Similarly there can be circuits that return the w to the same value but z
returns to a different value. This gives rise to an equation of type (29) and
is equivalent to doing the same thing for f o−1(). There could be a finite or a
countably or uncountably infinite number of singular points. See for example
(67) with solution (69) that has uncountably many singular points on the unit
circle. [Is this correct? For the case when the number of singular points is finite
or countably infinite, this leads to the graph of f() being described as a set of
collections of points say z1, z2 . . . zp, w1, w2 . . . wq such that every one of the z’s
is mapped to all of the w’s in every collection. Away from singular points, all
the z’s are distinct and so are all the w’s. Therefore the positive integers p, q
are constants for the function f(), but either could be ∞. It may be useful to
define the signature of an function in f() to be say {(p1, q1), (p2, q2), . . .} where
each of the pairs corresponds to one component of the function.]

The fact the functions can be multivalued and can have many components
does unfortunately introduce some complexity. Many components in a function
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might make it unclear how to count a set of functions. For example functions
are different if their sets of components are different in any way e.g. it is
possible to have a set of functions each of which has a single component.
Also another set of functions could have all possible pairs of the same set of
components with each pair in a different function, and another could have all
possible non-empty subsets of the same set of components, each in a different
function, and finally a single function that has all the components in the sets.
For solutions of equations it will usually be the case that if a set of components
satisfies the equations, any function that consists of a non-empty subset of the
components will also satisfy them which of course includes the function that
has all the components. This will be the case if the equation only involves the
function values and not anything else such as the number of such values etc.
and applies to equations (30) and (29) below. Much of this complexity can be
mitigated by referring to the set of single-component solutions of an equation.

An equation w = f(z) means that w is one of the values of f(z) i.e. w ∈
f(z) or w is the set of all values of f(z) depending on context.

In Section 5 the singular points associated with power functions are all
described by special cases of the following type of equations

f(z) = f(g1(z)). (29)

f(z) = g2(f(z)) (30)

These equations can be associated in general with functions that are not either
left-unique or right-unique. For example if f() ∈ A is not right-unique so that
it has many different values generally, then at one point z1 by picking on one
pair of values, the first and the second, another function g2() can be defined
by mapping from the first to the second after letting z1 vary smoothly over
all of C so that, in the absence of singular points of f() where a pair of these
values become equal, if f() is continuous so is g2(). Thus g2() is defined by
(30). On circling a singular point the values may swap or change so in general
g2() will be multivalued and may not be unique. If g2() is not unique (and
trivially if it is) the members of g2() will form a group under composition
because the composed function will still be a function mapping value(s) of f()
to others. Likewise f() that is not left-unique will allow the function g1() to
be constructed satisfying (29) and the set of such functions will form a group
under composition.

Later on many examples arise in which these types of equation seem to not
only characterise the singular points, but they also act as defining equations
for classes of functions f() ∈ A. This is also connected closely with their
special solutions. Some basic results follow regarding equations (29) and (30)
followed by examples that motivate some general theory of special solutions.

[ Any single component multivalued function f() ∈ A can be a solution
of (30) because once f() is chosen, pairs of values (w, g2(w)) are obtained by
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putting each possible value of z ∈ C into (30) making sure that every pair of
values (z, f(z)) of the multivalued f(z) is included for each value of z. The
graph of g2() (i.e. the set (z, w) such that w = g2(z)) must be a subset of
this i.e. one of its components. It is not necessary that every value of f(z)
is mapped to every other one by g2(). If f(z) = {w1, w2, w3} it could be that
g2() maps w1 to w2, and w2 to w3 and w3 to w1. For example (16) with p = 3.
]

Theorem 7.1. Any single component function f() ∈ A satisfies (29) and
the associated single-component functions g1() form a group under composition.

Inverting this gives f o−1(z) = go−1
1 (f o−1(z)) where go−1

1 () is uniquely de-
termined therefore by renaming f o−1() as f() and renaming go−1

1 as g2()

Theorem 7.2. Any single component function f() ∈ A satisfies (30) and
the associated single-component functions g2() form a group under composition.

Lemma 7.3. If f() ∈ A satisfies (30) with g2(), then f() has singular points
at every point (z, w) that is a solution of w = g2(w) where w = f(z).

Proof. If Lemma 6.4 is applied to solutions of (30) let wi = f(z), two branches
of f() are related by w1 = g2(w2) (amongst other possible relationships) and
so their equality which is the meaning of Lemma 6.4 gives the equations w =
g2(w) with w = f(z) that define the locations of some of the singular points
in solutions for f() of (30) i.e. those common to all solutions f().

Next follows a few lemmas that are almost obvious which follow from prop-
erties of relations in general. They are needed to complete the main theorems
of this section.

By Theorem (4.1), analytic functions are always total (left and right) except
for the constant function, Lemmas (1.1) and (1.2) can be expressed in terms
of functions as follows

These results are not related to (29) or (30) [

Lemma 7.4. If f2(f1()) is left-unique then f1() is left-unique or f2() is
constant.

Lemma 7.5. If f2(f1()) is left-unique then f2() is left-unique or f1() is not
right-unique.

Renaming f1() and f2() to their inverses and using the facts that inversion
swaps left- and right- uniqueness and left- and right- totality, and the inverse
of a constant function does not exist, gives two obvious results that can be
combined as follows

Lemma 7.6. If f1(f2()) is right-unique then (i) f1() is right-unique and (ii)
either f2() is right-unique or f1() is not left-unique.
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]

Lemma 7.7. If f() ∈ A satisfies (29) with g1(), then f() has singular points
at every point (z, w) that is a solution of z = g1(z) where w = f(z).

Proof. Invert (29) to get f o−1(w) = go−1
1 (f o−1(w)) and apply Lemma 7.3 and

rename f o−1() as f() and go−1
1 () as g2().

Applying h() to both sides of (29) shows that if f() is a solution of (29)
so is h(f()) for any h() ∈ A. Starting with z2 = g1(z1), applying f() to both
sides and using (29) gives f(z2) = f(g1(z1)) = f(z1) i.e. from equation (29) it
follows that

z2 = g1(z1) ⇒ f(z1) = f(z2). (31)

From (31) it follows that, starting with z2 = g1(z1), gives

f(g1(z1)) = f(z2) = f(z1) (32)

so (29) with z = z1 holds which is independent of z2 and (32) which will be true
for one value of z2 therefore (29) holds that does not depend on the value of
z2; this is the converse showing that (31) is equivalent to (29). With different
symbols this is the same as

z3 = g1(z2) ⇒ f(z2) = f(z3) (33)

and substituting (31) into (33) gives z3 = g1(g1(z1)) ⇒ f(z1) = f(z3). This
can be repeated any number of times giving z2 = gon1 (z1) ⇒ f(z1) = f(z2) for
any n ∈ N. Because this is symmetric, exchanging z1 and z2 and combining the
results, this can be written as (z1 = gon1 (z2)) ∨ (z2 = gon1 (z1)) ⇒ f(z1) = f(z2)
and

∃n ∈ N[(z1 = gon1 (z2)) ∨ (z2 = gon1 (z1))] ⇒ f(z1) = f(z2). (34)

Suppose that the special solutions of (29) are defined to satisfy in addition the
converse of this, it can be written as

fs1(z1) = fs1(z2) ⇔ ∃n ∈ N[(z1 = gon1 (z2)) ∨ (z2 = gon1 (z1))] (35)

which can be abbreviated to z1 ∼ z2 which is an equivalence relation.
This states that the distinct values of fs1() are in one to one correspondence

with the equivalence classes of ∼. Any solution f(z) of (29) is a function of
the equivalence classes i.e. its value is the same for each member of the same
equivalence class, therefore it can be written as a function of an arbitrary such
function fs1() i.e. f(z) = h(fs1(z)) where h() is also right-unique by Lemma 7.6
if fs1() is. Also by Lemma 6.6, the singular points of f() will include all points
corresponding to the singular points of fs1() and of h(). Therefore the functions
fs1() are solutions of (29) with the minimum number of singular points. Here
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clearly fs1() can be chosen to be single-valued i.e. right-unique. Intuitively, if
z1 ̸= g1(z1), so in the above notation, gok1 (z1) will all be different for all k ∈ Z
so if z describes a small circle around z1, the equivalence classes corresponding
to each of these points have z′s that also do this and so the equivalence classes
are a single valued function of z that is close to z1. Therefore there is no
singular point in fs1(z) where z ̸= g1(z). A formal proof seems difficult. This
is the meaning of the paragraph containing (82).

By its definition, fs1() is not actually a unique function. Any other function
f ∗
s1() could be used in its place where f ∗

s1(z) = h(fs1(z)) where h() is any left-
and right-unique function which must be a bilinear function.

For any more complex cases such as when f() has sets of values, these sets
will then be in one to one correspondence with the equivalence classes of ∼
and this can be represented like this with a multivalued function h(). This
shows that

Theorem 7.8. A function f() ∈ A satisfies (29) with g1() ∈ A\I i.e. g1()
in not the identity function I, if and only if f(z) = h(fs1(z)) for some function
h() ∈ A where fs1() is a right-unique solution of (29) with g1(), such that in
addition, fs1() has the minimum number of singular points i.e. singular points
(z, f(z)) only where z satisfies z = g1(z). If f() is right-unique so is h().

An example is f(z) = f(2z). This leads to the equivalence relation

∃n ∈ N[z1/z2 = 2n or 2−n] ⇔ ∃n ∈ Z[ln2 z1 − ln2 z2 = n] (36)

so ℑ(ln2(z1)− ln2(z2)) = 0 and real part can be expressed in terms of the floor
of these values i.e. these values rounded down to integers i.e. ln2(z1)−ln2(z2) =
⌊ℜ ln2(z1)⌋ − ⌊ℜ ln2(z2)⌋ so the general solution of f(z) = f(2z) is h(fs1(z))
where fs1(z) = ln2(z) − ⌊ℜ ln2(z)⌋ and h() is arbitrary in A. Here ⌊ and ⌋
bracket an argument of the “floor” function that rounds down to the closest
integer.

If f(z) = z1/2 then f(z) = f(z2
−n
) for all n ∈ N which converges to all

the values on the unit circle which is common to all the equivalence classes.
Therefore a smooth solution must be constant.

Definition 7.9. With reference to Theorem 7.8, define S[] as the mapping
from g1() to fs1(). It maps a group X of single-component functions g1() in A
(typically containing just the identity and a function and its inverse and can
be defined by giving its generators) to a set Y of members of A. The set Y
also forms a group under composition and is such that every member f() of
Y is a left-unique and right-unique function of every other member f ∗() of Y

i.e. f(z) = a+bf∗(z)
c+df∗(z)

for some a, b ∈ C. Therefore the set Y is represented by

any single member of it and this fact motivates the notation S[g1()] = fs1()
as though the result of S[] has a single member. The square brackets are the
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notation for an operator i.e. a function with another function as an argument,
and S can be thought of as an abbreviation for “simplest” or “special”.

The operator S is the mapping from a generator of the group X (if there
is only one) e.g. g() to any member of S[g()]. From (29) by substituting
z = go−1(w) or w = g(z) it can be written as f(go−1(w)) = f(w) which is an
equation of the same form, and because (35) is the same when g() is replaced
by its inverse, it follows that

S[g()] = S[go−1()]. (37)

Also by substituting gok(z) for z in (29) gives fs1(g
ok(z)) = fs1(g

o(k+1)(z))
for any k ∈ N. Then S[g()] = l() implies l(z) = l(g(z)) = l(go2(z)) . . . =
l(gon(z)) ∀n ∈ N. Also l() only has singular points where z = g(z) i.e. l()
has singular point at (z, l(z)) implies z = g(z). From this it follows that l()
has singular point at (z, l(z)) implies z = gon(z) which is the same as l() only
has singular points at points (z, l(z)) such that z = gon(z) so l() has both
properties of a member of S[gon()]. Therefore S[g()] ⊆ S[gon()]. Then from
the structure of the result of S i.e. the Y above and (37), it follows that
S[g()] = S[gon()] for all n ∈ Z except n = 0 i.e. the following result is proved

Theorem 7.10.

∀n ∈ Z\{0} {S[g()] = S[gon()]} (38)

From (35) it follows that

z1 ∼k z2 ⇔ ∃n ∈ N[(z1 = gonk1 (z2)) ∨ (z2 = gonk1 (z1))] ⇒
∃n ∈ N[(z1 = gon1 (z2)) ∨ (z2 = gon1 (z1))] ⇔ z1 ∼ z2

(39)

where ∼k has been introduced in a manner analogous to ∼ for the modified
version of (35) where gok1 () takes the place of g1(). This can be summarised as
z1 ∼k z2 ⇒ z1 ∼ z2 thus the equivalence classes of ∼k are nested within those
of ∼. So any solution of fsk1(z) = fsk1(g

ok
1 (z)) for fsk1() is a function of the

equivalence classes of ∼k so fs1(z) = h(fsk1(z)) for some right-unique function
h().

From (29), f()o(n−1) can be applied giving f on(z) = f on(g1(z)) so if f()
satisfies (29) so does f on() with the same g1() and any n ∈ N. This also
follows from Theorem (7.8).

The extension to multiple simultaneous equations of type (29) will depend
on the analogous existence of simultaneous equivalence classes.

7.1 solutions of (30)

From here up to Theorem 7.13 may be unnecessary!



Analytic Functions 29

Lemma 6.4 is quite confusing because the concept of “solution” is being
used in different contexts and the same equation (30) is being used in two
different ways, one to determine the set of functions f() satisfying this for
a given g2(), and the other to determine the set of singular points that are
common to all members of this set. If P = (z1, w1) is not such a point, even
if it satisfies w = f(z) and f() as a function satisfies (30), then it is not
necessarily true that P as a point satisfies (30) and because w1 ̸= g2(w1) there
is no reason for P to be a singular point unless f ′(z1) = 0 or ∞. An example
of the latter is a singular point at z = z1 if f ∗(z) = f(z1 + (z − z1)

2) which
also satisfies (30) showing that (z1, f

∗(z1)) = (z1, f(z1)) is a singular point of
f ∗(). Here f ∗() is taking the place of f(). In (30) let z = h(t) for any h() ∈ A
and define the function f ∗(t) = f(h(t)). Then f ∗(t) = g2(f

∗(t)) i.e.

Lemma 7.11. If f(z) satisfies (30) with g2() then so does f(h(z)) for any
h() ∈ A.

This is a very general solution of (30) with the same f() and g2() because
the function h() ∈ A is general. However the general form of the solution of
(30) with fixed g2() ∈ A is not necessarily f(z) = fs(h(z)) where h() ∈ A for
any single fixed function fs() to be determined because it is conceivable that
there could be more than one such function fs() and in fact Lemma 7.11 only
shows that the set of solutions of (30) for fixed g2() is in general of the form

⋃
f∈S

 ⋃
h()∈A

f(h())

 . (40)

where S is a set of functions in A such that for any pair of functions f1() and
f2() in S it is not the case that either

f1(z) = f2(h(z)) or f2(z) = f1(h(z)) (41)

for any h() ∈ A. The point of the last condition is to eliminate duplication
that would otherwise occur in the set defined by (40).

If the search is for the subset of left-unique solutions f() of (30), this is
likely not the most general solution for fixed g2() because, by Lemma 6.13, if
f() is left-unique and has a singular point then f ∗(z) = f(h(z)) will have a
singular point at the corresponding location regardless of h(). Moreover, f1()
and f2() are left-unique in (41) and f o−1

2 (f2(z)) = z so the first part of (41)
implies h(z) = f o−1

2 (f1(z)), so the set S (now called S∗) is a set of functions
such that no pair of them f1() and f2() is such that h(z) = f o−1

2 (f1(z)) for
any h() ∈ A. This is clearly impossible if S∗ has more than one element
because f o−1

2 (f1(z)) ∈ A. Therefore the general solution of (30) for left-unique
functions f() takes the form ⋃

h()∈A

f ∗(h()). (42)



30 John Nixon

for some particular function f ∗() ∈ A that must also be left-unique because f()
is by Lemma 7.5 assuming h() is right-unique. The function f ∗() however is
not unique because (42) can be written in many different ways using different
functions f ∗(), but in each equivalent way of writing the set of solutions there
is only one function f ∗(). Therefore the general form is f(z) = fs(h(z)) where
fs() is any of the special solutions of (30) that have the minimum number of
singular points i.e. singular points only where w = g2(w) and w = f(z) as
required by Lemma 6.4 i.e. the function f ∗() above can be identified with fs().
These arguments show that

This is very like Theorem 7.13.

Theorem 7.12. A function f() ∈ A is left-unique and satisfies (30) with
g2() ∈ A if and only if f(z) = fs2(h(z)) for some right-unique function h() ∈ A
where fs2() is a left-unique solution of (30) with g2() that has the minimum
number of singular points i.e. singular points (z, w) only where w = f(z)
satisfies w = g2(w).

Requiring f() in Theorem 7.12 to be left-unique eliminates for example
f(z) = z2 or (ln(z))2 so (ln(h(z)))2 is eliminated as a general solution of (30)
by the left-uniqueness condition on f(). The general solution f(z) = h(z)2

for arbitrary h() is vacuous because it is equivalent to f(z)1/2 = ±h(z) which
is the set of functions each of which is the union of a member of A and its
negative and this must be true whatever f() is and includes any function
f() ∈ A. Generally, the set of functions f(z) = k(h(z)) where k() is right-
unique and h() is arbitrary implies ko−1(f(z)) = ko−1(k(h(z))) which is a union
that includes h() itself and is arbitrary i.e. vacuous because if h() is chosen as
ko−1(f(z)) then k(h(z)) = k(ko−1(f(z))) = f(z).

For f(z) = (ln(h(z)))2 for arbitrary h(), f(z)1/2 = ± ln(h(z)) so f(z)1/2 =
f(z)1/2 ± 2πi which is not vacuous and means that for any value of f(z)1/2,
2πi can be added or subtracted from it, and the sign can be changed to give
another value of it. It can be written as f(z) = (f(z)1/2 + 2πi)2 which is also
an equation of the type (30) with general solution f(z) = (ln(h(z)))2 which
should be part of a more general result than Theorem 7.12.

If f() does not have to be left-unique, how can duplication be avoided in
the general solution?

[ This set obviously has a vast amount of repetition as defined by (40).
Any f ∗() ∈ A that is also of the form f(h()) for some other f() ∈ A should be
excluded from the outer union in (40). Also because fs(h()) are all solutions,
the outer union must include the special solutions fs(). Then the question is
are there any other solutions? Let f ∗() satisfy (30) but not be one of fs(h()).
Then by Lemma 6.4 f ∗() as well fs() has singular points at every point (z, w)
that is a solution of w = g2(w) where w = f(z). Each subset of solutions
for fixed f(). Take any solution f() and identify singular points that are not
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required by Lemma 6.4 and use this to construct h() or an equation it satisfies
so we know it exists. see the dual result half way down page 33. ]

[ Equation (30) can be written as

z1 = z2 ⇒ f(z1) = g2(f(z2)). (43)

It is hypothesised that the special solutions also satisfy

z1 = z2 ⇐ f(z1) = g2(f(z2)). (44)

how could this ever be true?
i.e. they satisfy

z1 = z2 ⇔ f(z1) = g2(f(z2)). (45)

i.e. the equivalence relation defined by z1 ∼ z2 ⇔ f(z1) = g2(f(z2)) is just
equality. Can we show that the s.p. of f() satisfying this are included in those
for any solution of (30)? About the simplest example possible is f(z) = −f(z)
having the equivalence relation z1 ∼ z2 ⇔ f(z1) = ±f(z2) (+ sign for n
even and − sign for n odd). This is equivalent to f 2(z1) = f 2(z2) so the
equivalence relation is equality if f 2() is left-unique. For example f 2(z) = ln(z)
so f(z) = ln(z)1/2. The general solution is h(z)1/2 and the special solutions

are f(z) =
(
a+bz
c+dz

)1/2
where h() left-unique and right-unique. If f() is not left-

unique it must satisfy (29) which has singular points determined in a manner
similar to solutions of (30).

Theorem 7.13. A function f() ∈ A satisfies (30) with g2() ∈ A if and
only if f(z) = fs2(h(z)) for some function h() ∈ A where fs2() is a left-unique
solution of (30) with g2(), such that in addition, fs2() has the minimum number
of singular points i.e. singular points (z, w = f(z)) only where w satisfies
w = g2(w). If f() is left-unique so is h().

Proof. Invert (30) to obtain f o−1(z) = f o−1(go−1
2 (z)). This is (29) with f()

renamed as f o−1(), and g1() renamed as f o−1
1 (). Apply these name changes to

Theorem 7.8.

Theorems (7.8) and (7.13) can be combined as follows because the gen-
eral form which specialises h(fs1(z)) and fs2(h(z)), both by choosing h() is
fs2(h(fs1(z))).

Theorem 7.14. A function f() ∈ A satisfies (29) with g1() ∈ A, and (30)
with g2() ∈ A if and only if f(z) = fs2(h(fs1(z))) for some function h() ∈ A
where fs1() is a right-unique solution of (29) with g1(), such that fs1() has
the minimum number of singular points i.e. singular points (z, w = f(z)) only
where z satisfies z = g1(z) and fs2() is a left-unique solution of (30) with g2()
such that fs2() has the minimum number of singular points i.e. singular points
(z, w = f(z)) only where w satisfies w = g2(w).
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This makes most sense if h() is left-unique and right-unique i.e. a bilinear
function. This is the simplest solution. In this case, fs2(h()) and h(fs1()) can
be written as fs2() and fs1() respectively because of the arbitrariness in fs1()
and fs2(), so that f(z) = fs2(fs1()).

With reference to Theorems (7.8) and (7.13), (30) is satisfied by f(z) =
h(fs1(z)) so fs2(h(z)) = g2(fs1(h(z)) for arbitrary h() which can be called w
therefore

fs2(w) = g2(fs2(w)). (46)

Also (29) is satisfied by f(z) = h(fs1(z)) so h(fs1(z) = h(fs1(g1(z))) for arbi-
trary h() therefore

fs1(z) = fs1(g1(z)). (47)

The operators S1 and S2 will be introduced here such that fs1() = S1[g1()] and
fs2() = S2[g2()]. Now it can be checked whether

f(z) = fs2(h(fs1(z)) (48)

satisfies f(z) = g2(f(g1(z))). Substituting this in gives fs2h(fs1(z))) = g2(fs2(h(fs1(g1(z))))
which simplifies to fs2(h(fs1(g1(z))) by (46) and to fs2(h(fs1(z))) by (47) which
is an identity, so it follows that fs2(h(fs1(z)) is indeed a very general (if not
the most general) solution of f(z) = g2(f(g1(z))).

Likewise in reverse, starting with fs2(h(fs1(z))) using (47) then (46) it is
equal to g2(fs2(h(fs1(g1(z)))) and finally using (49) it becomes f(z) thus (48)
follows. This proves that (48) and (49) are equivalent provided the functions
fs1() and fs2() are defined in terms of g1() and g2() as in (46) and (47).

Inverting (46) gives f o−1
s2 (z) = f o−1

s2 (go−1
2 (z)). Also fs2() = S2[g2()] =

(S1[g
o−1
2 ()])o−1. From (47) by substituting go−1

1 (t) for z gives fs1(g
o−1
1 ()) = fs1()

i.e. S1[k()] = S1[k
o−1()] for any k() ∈ A. Therefore S2[g2()] = (S1[g2()])

o−1

which is the relationship between S1[] and S2[]. Elsewhere S1[] will simply be
referred to as S[].

Theorem 7.15. The general solution of (49) for f() is f(z) = fs2(h(fs1(z)))
i.e. f(z) = (S[g2])

o−1(h(S[g1](z))) where the conditions on fs1() and fs2() and
h() in Theorems (7.8) and (7.13) apply and the operator S[] is defined such that
S[g1()] is the solution k() of k(z) = k(g1(z)) unique up to a bilinear function
having singular points only where z = g1(z).

How can fs1(), fs2() be obtained practically from g1() and g2() respectively.
What properties do these relationships S1[] and S2[] have? Do f(),g1() and g2()
have to be single-component functions?

Suppose in addition to f() ∈ A satisfying (30) with g2() it satisfies (29)
with g1() then f() satisfies

f(z) = g2(f(g1(z))). (49)
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It is a strange thing that in lemmas (7.3) and (7.7), the defining conditions for
the sets of common singular points of functions f() ∈ A satisfying (30) and
(29) look like rewritten versions of the same equations. These equations have
to be interpreted as equations for single-valued quantities to get these results.

Because of lemma 6.4, every solution of (29) has singular points at points z
where z = g1(z) the type of which is determined as in Section 9 or extensions
of it. Thus it is unnecessary to think about the types of the singular points of
h(fs1(z)).

For example (fs1(z))
−2 which also has a singular point where fs1(z) = 0.

The uniqueness of the set of equivalence classes on which fs1() is based suggests
that of all the solutions of (29) in A, the special solutions fs1() that also satisfy
(35) have singular points only where z = g1(z) because if there was another
singular point in a special solution of (29) where z ̸= g1(z) then all functions
of the form f(z) = h(fs1(z)) would by Lemma 6.6 also have a singular point
there contradicting the above.

All the types of singular point so far found are of the types q : p representing
the winding number ratio where p and q are positive integers have no common
factors. These are all the types of singular points for algebraic functions. In
the cases where p and q are finite, a singular point (z0, w0) is a point about
which if a path is traced from the starting point back to itself q times in the
z plane this corresponds to a path in the w plane described p times back to
itself.

The most general form of equations such as (13), (16), (18), (22) and (26)
that describe the behaviour in the neighbourhood of a singular point seems to
be

f(z) = g2(z, f(g1(z))) (50)

in which g2 has direct z dependence in addition to its dependence on f(). The
conditions for singular points required by (50) are

z = g1(z)
f = g2(z, f)

. (51)

The meaning of (50) where g1() is the identity function is that there is an
associated singular point (z0, w0) which is the point about which if a path in
the z plane is followed to its starting point and if the function value is followed
continuously, the values of the function at each end of the path are related by
(50). This is the case where q = 1. As will be shown, the singular point is also
a point where the number of function values changes and w0 is given by the
different values of the function w0 = f(z0) being equal. This can be used to
determine (z0, w0).

There is another version of this to describe the situation where p = 1. In
this case g2() is the identity function and the roles of z and w = f(z) are
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reversed. There is then a point (z0, w0) about which if a continuous path is
traced in the w plane back to itself then the corresponding values of z are
related by (50). The equality of these values determines the value z0.

In addition to these cases, for non-algebraic functions it is possible to have
q = ∞. In this case the value of w is never returned to its original value.
Probably the simplest example is w = f(z) = ln(z) the inverse of the complex
exponential function. This is equivalent to z = exp(w) = exp(w). exp(2πi) =
exp(w + 2πi). Therefore w + 2πi = ln(z) and equation (50) is satisfied for
f() = ln() and g1(z) = z+2πi and g2(z, f) = f . Therefore the singular points
are given by z = z + 2πi from lemma 6.4 which implies z = ∞. This resolves
the paradoxical situation with Theorem 1.3 and Lemma 4.2 and the fact that
the exponential function has no finite singular points (they are at z = ∞ with
w = 0 and ∞). As in the examples above g2() and g1() are right-unique and
the singular point of f() is at z = 0.

Analysis of behaviour in the neighbourhood of singular points similar to the
above can be found for functions of a complex variable that are not algebraic
as the following examples show.

Returning to f(z) = ln(z), it satisfies f(z) = f(z)+ 2πi. Conversly f(z) =
f(z) + 2πi implies, taking the exp of both sides, the identity exp(f(z)) =
exp(f(z) + 2πi) = h(z) say, for some function h(z) in A which is completely
arbitrary because this imposes no condition on h(), therefore in general f(z) =
ln(h(z)). The singular point(s) of f() are only where h(z) = 0 or ∞ and at
points z that are singular points of h(). At minimum there are singular points
of f() only where h(z) = 0 or ∞ when h(z) = a+bz so that h() has no singular
points. This implies z0 = −a/b or ∞ and the only fixed singular point is at
z0 = ∞ with the other one having an arbitrary location, and the singular point
by 6.4 has w0 given by the solution of the single-value equation w0 = w0 +2πi
which is w0 = ∞. Therefore the singular points of ln() are at (0,∞) and
(∞,∞) and those of its inverse exp() are at (∞, 0) and (∞,∞).

Consider w = (ln(z))2. Can a similar analysis for this be done? We have
w = (ln(z) + 2πi)2 then (50) is satisfied with g2(z, f) = (f 1/2 + 2πi)2 and
g1(s) = s. Note that g2() is now not right-unique. Another analysis of this
sort comes from (ln(z))2 = (− ln(z))2 = (ln(z−1))2 i.e. Equation (50) with
g2(z, f) = f and g1(z) = z−1, which shows that if in equation (50) either of
g2() or g1() is not right-unique, this analysis may not be unique.

Consider f(z) = z ln(z), then

f(z) = f(z) + 2πiz. (52)

This can be represented in terms similar to (50) with single valued g2() and
g1() but this time g2 has direct z dependence in addition to its dependence on
f() and g2(z, f) = 2πiz + f and g1(z) = z. Conversely from (52), dividing by
z and taking the exponential gives the tautology exp(f(z)/z) = exp(f(z)/z),
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therefore this function can be any function in A say h(z). Therefore f(z)/z =
ln(h(z)) and f(z) = z ln(h(z)). The singular points of f() are at any point
where h(z) = 0 or ∞ or at any point that is a singular point of h(). This gives
at minimum, where h(z) = a+ bz with b ̸= 0, singular points at z = −a/b and
z = ∞. If it doesn’t have this property how can it be transformed to a function
that does have it, (52) being one example? Typically, if (29) is satisfied for
two separate functions g1() or a multivalued g1() then f() is expected to be
constant because applying g1() and g2() and their inverses repeatedly to a z
value will likely reach any value eg f(z) = f(z1/2). What are the conditions
for an exception to this.

Consider the binary operation which is the special common solution f() of
f(z) = h1(f1(z)) and f(z) = h2(f2(z)) for fixed f1() and f2(), but arbitrary
h1() and h2().

In order to generate g1() and g2() from f() according to (29) and (30) this
assumes that g1() and g2() are not dependent on z. In the general case this is
not so as (52) shows. Generalising (52) to f(z) = f(z)+k(z) for some k() ∈ A.
To solve this substitute f(z) = f ∗(z)k(z). Then it cancels down to f ∗(z) =
f ∗(z)+1 so 2πif ∗(z) = 2πif ∗(z)+2πi and exp(2πif ∗(z)) can be anything, call

it h() ∈ A, then f ∗(z) = ln(h(z))
2πi

and finally f(z) = k(z) ln(h(z))
2πi

provided k(z)
is not the zero function k(z) = 0. From this the solution of f(z) = k1(z)f(z)

can be obtained as f(z) = k1(z)
ln(h(z))

2πi by a ln() transformation.
If f(z) = k1(z)f(z) + k2(z) again make the substitution f(z) = f ∗(z)k2(z)

then it simplifies to f ∗(z) = k1(z)f
∗(z)+1 and so exp(2πif ∗(z)) = exp(2πik1(z)f

∗(z))
it may not be useful to go further.

Inversion may be useful too for example (52) and its solution can be written
as
f o−1(z) = solution for w of z = f(w) + 2πiw. This has solution for f() given
by
f o−1(z) = solution for w of w ln(h(w)) = z. This can be written as follows
where l() = f o−1(): l(z) = solution for w of z = lo−1(w) + 2πiw has solution
l(z) = solution for w of w ln(h(w)) = z. Better notation needed!

Consider l(f(z)) = l(k(z)f(z)) as a special case of (50).
What happens if (50) is inverted?
It seems paradoxical to say that z ln(h(z)) is the general solution of (52)

because (52) just states that whatever the multivalued function f(z) is, if
it has any value w at some point z, then at that point it also has the values
w+2πinz for all n ∈ Z. In fact z ln(h(z)) can be any function f() inA provided

h(z) = exp(f(z)
z
) and (52) holds in the multivalued sense. Nevertheless the use

of the term “general solution” in this and other cases does seem convenient.
Suppose f(z) = (ln(z))k. Introduce the auxiliary function g1(z) = zp

then f(g1(z)) = (ln(zp))k = pkf(z) so (50) holds with g2(z, f) = fp−k, and
Lemma 5.2 characterises g1(). Alternatively, if only f(g1(z)) = pkf(z) and
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g1(z) = g1(e
2πi/pz) then this is a set of defining equations for f() involving two

instances of (50) and linear functions only, one to characterise g1() and the
other to define f().

8 Compositional powers of a function

This means expressions of the form f()on where n can be a positive or negative
integer that have been introduced earlier in the context of relations in general.
There is a natural extension of this to other exponents such as any rational
number or any value in C. One neat way to do this is from a nice trick I found
online [5] and is as follows. Introduce the function f ∗(t) = f ot(z0) where z0 is
an arbitrary value. Then f ∗() satisfies the following

f ∗(t+ 1) = f o(t+1)(z0) = f(f ot(z0)) = f(f ∗(t)) (53)

then in terms of f ∗() a compositional power of f() can be expressed as follows
f on(f ∗(t)) = f on(f ot(z0)) = f o(n+t)(z0) = f ∗(n+ t) i.e.

f on(w) = f ∗(n+ f ∗(o−1)(w)). (54)

Also (53) is f ∗(t) = f o−1(f ∗(t + 1)) has a formal solution as above given
by f ∗(t) = S2[f

o−1](h(S1[z → z + 1](t))) from Theorem 7.15 so f on(w) =
S2[f

o−1](h(S1[z → z + 1](n+ [S2[f
o−1](h(S1[z → z + 1](t))]o−1(w)).

Example: f(f(z)) = z2. The solution should be f(z) = z(2
1/2) but because

21/2 is irrational, f(z) has an infinite number of values!

9 The relationship between g1() and the type

of singular points of f () satisfying (29)

Consider the role played by g1() and its derivatives at an intersection point
z1 which is a solution of g1(z) = z. This as will be seen controls to leading
order the behaviour of f(z) in the neighbourhood of the singular point at z1
provided f(z) satisfies (29) where g1() is as in (29). First consider an arbitrary
value of g′1(z1). For z ≈ z1, g1(z) ≈ g1(z1)+(z− z1)g

′
1(z1) = z1+(z− z1)g

′
1(z1)

therefore f(z) ≈ f(z1 + (z − z1)g
′
2(z)). Put z = z1 + δ and treating this

as an equality then f(z1 + δ) = f(z1 + δg′1(z1)). A change of variable can
now be made so as to relate this equation to f(z) = f(z)+2πi with its known
solution. Let w = ln(δ) = ln(z−z1) and the new function f ∗() by f ∗(w) = f(z)
then f ∗(w) = f ∗(w + ln g′1(z1)). Now let w = αt and f+(t) = f ∗(w) = f(z)

then f+(t) = f+
(
t+

ln g′1(z1)

α

)
. Then choose α so that ln(g′1(z1)/α = 2πi i.e.
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α =
ln(g′1(z1)

2πi
then f+(t) = h(exp(t)) i.e.

f(z) = f ∗(w) = h(exp(w/α)) = h

(
(z − z1)

2πi
ln(g′1(z1))

)
. (55)

This is the asymptotic behaviour of f() for z close to z1 where h() is an
arbitrary function in A. This works provided g′1(z1) ̸= 0.

Now suppose g′1(z1) = 0 but g′′1(z1) ̸= 0. Then g1(z) ≈ g1(z1)+
(z−z1)2

2
g′′1(z1)

then f() satisfies f(z) = f
(
z1 +

(z−z1)2

2
g′′1(z1)

)
. Now put k(δ) = f(z1 + δ)

where as before δ = z − z1 then k(δ) = k(δ2g′′1(z1)/2). Introduce k∗() by
k(δ) = k∗(ln(δ)) then k∗(ln(δ)) = k∗(2 ln δ+ln(g′′1(z1))−ln(2)). Introduce w by
w = ln δ then k∗(w) ≈ k∗(2w) because as δ → 0, |w| → ∞ so the other terms
can be asymptotically ignored. Now introduce k+() by k+(ln(x)) = k∗(x) then
k+(lnw) = k+(lnw+ln 2) so k+(u) = k+(u+ln 2) where u = lnw. Now let t()
be defined by t(uβ) = k+(u) then t(uβ) = t(uβ + β ln(2)). Choosing β to be
β = 2πi

ln(2)
then t(x) = t(x+2πi) from which t(x) = h(exp(x)). Undoing all these

transformations now shows that t(x) = t(uβ) = k+(u) = k+(ln(w)) = k∗(w) =
k(δ) = f(z1 + δ) = f(z) and h(exp(x)) = h(exp(βu)) = h(exp(β ln(w))) =
h(wβ) = h([ln(z − z1)]

β) so finally

f(z) = h
(
[ln(z − z1)]

2πi
ln 2

)
(56)

where this result will only be asyptotically correct as z → z1. Note that g
′′
1(z1)

is not involved.
From (55) g′1(z1) = 1 is obviously also a special case needing separate

treatment. Then g1(z) ≈ z + (z−z1)2

2
g′′1(z1) and the equation to be solved is

f(z) = f
(
z + (z−z1)2

2
g′′1(z1)

)
. Putting z = z1 + δ and introducing f ∗(δ) =

f(z1 + δ) gives

f ∗(δ) = f ∗
(
δ +

δ2

2
g′′1(z1)

)
. (57)

Introduce the new variable k by k
(
δ + δ2

2
g′′1(z1)

)
− k(δ) = ∆ so that the

iteration of (57) is transformed to an arithmetic progression, then for small δ,
δ2

2
g′′1(z1)k

′(δ) = ∆ which can be integrated and inverted to give δ = − 2∆
kg′′1 (z1)

.

Then f ∗
(

−2∆
kg′′1 (z1)

)
= f ∗

(
−2∆

kg′′1 (z1)
+ 2∆2

k2g′′1 (z1)

)
. Introducing f+(k) = f ∗(δ) this can

be written in terms of f+() as f+(k) = f+

(
−2∆

g′′1 (z1)(
−2∆

kg′′1 (z1)
+ 2∆2

k2g′′1 (z1)

)
)

which simplifies

to f+(k) = f+
(

k2

k−∆

)
≈ f+(k + ∆). Let g() be given by g(l) = f+(k) where

k = l/α then g(l) = g(l + α∆) and choosing α∆ = 2πi then g(l) = h(exp(l))
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where h() is arbitrary and this implies

f(z) = h

(
exp

(
− 4πi

g′′1(z1)(z − z1)

))
(58)

asymptotically as z → z1.
This result can be generalised as follows. Suppose g′1(z1) = 1 and g

(n)
1 (z1) =

0 for 2 ≤ n ≤ m − 1 and g
(m)
1 (z1) ̸= 0 for m ≥ 2. Then g1(z) = z +

(z−z1)m

m!
g
(m)
1 (z1)+O(z−z1)

m+1. In terms of f ∗() and δ as above, f(z) = f(g1(z))

becomes f ∗(δ) = f ∗
(
δ +

δmg
(m)
1 (z1)

m!
+O(δm+1)

)
. This can be iterated and if

k is chosen such that k

(
δ +

δmg
(m)
1 (z1)

m!

)
= k(δ) + ∆ which can be approxi-

mated by k′(δ)
δmg

(m)
1 (z1)

m!
= ∆ which integrates to k(δ) = −∆m!

(m−1)δm−1g
(m)
1 (z1)

, then

the iteration is an arithmetic progression and f ∗(δ) = f+(k) = f+(k + ∆).
Therefore similarly to the above,

f(z) = h

(
exp

(
−2πim!

(m− 1)g
(m)
1 (z1)(z − z1)m−1

))
(59)

asymptotically as z → z1.

10 Some interesting examples

This one doesn’t seem to make much sense! Another example is

f(z) = (f(z))1/2 (60)

with a singular point where f(z) = 0, which is a special case of (79) in which
g2() is not single valued. Taking natural logarithms twice gives

ln ln(f(z)) = ln(1/2) + ln ln(f(z)) (61)

and so
2πi

ln(2)
ln ln(f(z)) = −2πi+

2πi

ln(2)
ln ln(f(z)) (62)

so

exp

(
2πi

ln(2)
ln ln(f(z))

)
(63)

is arbitrary so call it h(z) then

f(z) = exp

(
exp

(
ln(2)

2πi
ln(h(z))

))
. (64)
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The function f() can only have a singular or inversion point where h() has
singular or inversion point(s) or where h(z) = 0 or ∞ so f(z) = 0 or ∞. This
log-like singularity from (60) is characterised by the equations

g2(z) = −g2(z)
f(z) = g2(f(z))

(65)

for the multivalued functions f() and g2(), where g2() is the special solution.
If f() is also the special solution then

f(z) = exp

(
exp

(
ln(2)

2πi
ln(a+ bz)

))
(66)

where a and b are constants.
Next consider

f(z) = f(z2)/2. (67)

This is a special case of (79) in which the condition for a singular point is more
complicated than for (29) for which the condition for a singular point would
give

z = g1(z) = z2 (68)

determining more than one such point i.e. z = 0, 1. The effect of the extra
factor of 2 complicates this a bit but this is still clearly true. Because g1()
is not left-unique, (68) relates new singular points to other points already
known to be singular points. In this example the singular points are dense
on the unit circle because these are points for which z(2

k) = 1 for arbitrarily
large k. It follows that f(z) = f(z2)/2 = f(z4)/4 = . . . f(z(2

k))/2k so if
z = reiθ, f(reiθ) = f((reiθ)2

k
)/2k for all k > 0. For fixed r and θ suppose

θ + 2πp ≈ 2kθ where p, k ∈ N then f(r(2
k)eiθ) ≈ 2kf(reiθ). Putting R = r(2

k)

gives f(Reiθ) ≈ ln(R)
ln(r)

f(reiθ). The log dependence on R behaviour at large R

and the positions (z) of the singular points may suggest the following formula

f(z) =

∫ 2π

0

dθ log2 |z − eiθ|. (69)

for a solution of (67). Its proof is as follows

f(z2) =
∫ 2π

0
dθ log2 |z2 − eiθ| =

∫ 2π

0
dθ log2

(
|z + eiθ/2||z − eiθ/2|

)
=
∫ 2π

0
dθ log2 |z + eiθ/2|+

∫ 2π

0
dθ log2 |z − eiθ/2|

= 2
∫ π

0
dθ log2 |z + eiθ|+ 2

∫ π

0
dθ log2 |z − eiθ|

= 2
∫ 2π

π
dθ log2 |z + ei(θ−π)|+ ”

= 2
∫ 2π

π
dθ log2 |z − eiθ|+ ”

= 2
∫ 2π

0
dθ log2 |z − eiθ| = 2f(z)

. (70)
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This example has really peculiar properties because f(z) is ∞ on the unit
circle and this appears to isolate the function into two regions that can behave
somewhat independently because (68) is satisfied for f() replaced by af()
where a ∈ C and clearly any two different values of a can be chosen inside
and outside the unit circle and the solutions can be described as having a
natural boundary on the unit circle. [This doesn’t work for finite prescribed
values because if finite values are prescribed on any closed contour the Cauchy
integral formula determines a function that is everywhere analytic and finite,
uniquely inside it, but does it work for the outside region?] This is an example
that divides C into two domains of holomorphy [4] that overlap only on the
unit circle.

Next follows an intriguing example where the condition for a singular point
(an equation of the type (29)) determines two of them and the solutions found
satisfy an additional equation of the type (79). Suppose g1(z) =

a+bz
c+z

. Then
g1(z) = z is a quadratic equation with solutions say z1 and z2 such that
z1 + z2 = b− c and z1z2 = −a and g1(z) can be written as g1(z) =

−z1z2+bz
b−z1−z2+z

.
However in this case, g1() is left-unique and single valued so only two singular
points arise as a result of (29) which becomes in this case

f(z) = f

(
bz − z1z2

b− z1 − z2 + z

)
. (71)

Therefore by lemma 7.7 solutions of (71) have singular points at z1 and z2.

Using methods similar to those used in deriving (55) it possible to formally
derive

f(z) = hk

∑
n∈Z

cn exp

2πi(ln(z − zk) + 2n1πi)

ln
(

z1−b
z2−b

)
+ 2nπi

 (72)

for k = 1, 2 where h1() and h2() are arbitrary functions. By trial and error,
the following are possible solutions of (71):

f(z) =

(
cn
z − z1
z − z2

)s

(73)

where s = 2πi

ln
(

z1−b
z2−b

)
+2nπi

and n ∈ Z. It is easy to show that

g1(z)− z1
g1(z)− z2

=
(z1 − b)(z1 − z)

(z2 − b)(z2 − z)
. (74)

Therefore

f(g1(z)) =

(
cn
z − z1
z − z2

)s(
b− z1
b− z2

)s

. (75)
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The extra factor is
(

b−z1
b−z2

)s
can be written (including all its possible values) as

exp(s ln(t)) = exp

(
ln(t)× 2πi

ln(t) + 2nπi

)
= exp

((
ln(t) + 2n1πi

ln(t) + 2nπi

)
× 2πi

)
= En1,n

(76)
where n1, n ∈ Z for some specific value of ln(t) and where t = b−z1

b−z2
. Increasing

n1 by 1 adds 2πi×2πi
ln(t)+2nπi

to the argument of exp() multipling the whole expres-

sion by exp
(

−4π2

ln(t)+2nπi

)
and En,n = 1. From these it follows that En1,n =

exp
(

4π2(n−n1)
ln(t)+2nπi

)
. Therefore

f(g1(z)) =

(
cn
z − z1
z − z2

) 2πi

ln( z1−b
z2−b)+2nπi

exp

 4π2(n− n1)

ln
(

b−z1
b−z2

)
+ 2nπi

 . (77)

From (29)

f(z) = exp

(
2πi

ln(t) + 2nπi
× ln

(
cn
z − z1
z − z2

))
. (78)

Taking this continuously round a small circuit C1 anticlockwise round z1 given
by z = z1+ϵeiθ for 0 ≤ θ ≤ 2π where ϵ is a very small positive real number gives

f(z) = exp
(

2πi
ln(t)+2nπi

ln
(

cneiθ

z−z2

))
= exp

(
(ln(cn) + iθ − ln(z − z2))

2πi
ln(t)+2nπi

)
The difference over the path C1 of the argument of exp() is 2πi.2πi

ln(t)+2nπi
so the

factor associated with doing C1 is exp
(

−4π2

ln(t)+2nπi

)
i.e. f(z) satisfies f(z) =

f(z) exp( −4π2

ln(t)+2nπi
). This can be applied to write (77) as (73) verifying the

assumed form of f() though this is probably not its most general form. Doing
the same thing for a small circuit C2 anticlockwise round z2 gives the equivalent
result f(z) = f(z) exp( 4π2

ln(t)+2nπi
).

11 Special solutions of the equations defining

singular points

******* This section seems as if there are some very important results to be
found but it needs quite a lot of work yet **********

*’s indicate likely theorems that have not yet been proved.
Let the binary relation ≻ on functions in A be defined by

f() ≻ g() ⇔ there exists an function h() in A such that f() = h(g()). Then the
relation ≻ that points towards the simpler function is reflexive and transitive.
Also

Theorem 11.1. If f() ≻ g() and g() ≻ f() then f(z) = a+bg(z)
c+dg(z)

for some
finite constants a, b, c, d ∈ C.
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Proof. Suppose f() ≻ g() and g() ≻ f() then f() = h1(g()) and g() = h2(f())
for some functions h1() and h2() in A, and therefore f() = h1(h2(f())) i.e.
h1(h2()) = I() which has no singular point. By Theorem 82 h1() can have no

singular point and is therefore a bilinear function and so f(z) = a+bg(z)
c+dg(z)

.

If f() ∈ A is left-unique and right-unique then f()o−1 has the same prop-
erties . f() and f o−1 are right-unique implies so are f()of o−1() and f o−1()of()
and their inverses which are same are both left-unique so these are both the
identity i.e. f(f o−1(z)) = f o−1(f(z)) = z. Because this has no singular point

f(f o−1(z)) = f o−1(f(z)) = z **********Prove that a left-unique and right-
unique function is bilinear *********** Suppose a set T of functions in A is
such that if f() ∈ T then h(f()) ∈ T . Then this set is determined by the set
R ⊆ T , the root functions, such that for any function f() in T there exists a
member g() ∈ R such that f() ≻ g(). Such a set T will be called a rooted
set, rooted by the set R. Suppose a single root function r() acts a root for T
i.e. ∀f() ∈ T [f() ≻ r()]. Suppose another function r1() also has this property,
then ∀f() ∈ T [f() ≻ r1()] and in particular r() ≻ r1(). Likewise r1() ≻ r().

Then by Theorem 11.1 r(z) = a+br1(z)
c+dr1(z)

. Such a rooted set will be called
singly-rooted. Thus the root functions associated with a singly rooted set are
related by a bilinear transformation.

From Theorem 11.1 any root function k() is unique up to a bilinear func-
tion or transformation (also known as a Möbius transformation or a linear

fractional transformation) i.e g1(z) = a+bk(z)
c+dk(z)

so a root function is actually a
set of functions each member of which is related to any other member like this
for some set of values a, b, c, d ∈ C such that ad − bc ̸= 0. The terminology
below will for simplicity refer to this special set just as a single function, the
root function.

Lemma 11.2. Every function in A is in the set rooted by a left-unique
function.

Proof. If g() is left-unique then f(z) = f(go−1(g(z))) so f() ≻ g().

Theorem 11.3. If gof() ≡ f(g()) = g(f()) and g() is left-unique and
right-unique then f()⊕ g() = gof().

Proof. The condition on g() gives go−1(g()) = I and g(go−1()) = I and also
f(g()) = g(f()). Suppose l(z) = h1(f(z)) and l(z) = h2(g(z)) for some
arbitrary analytic functions h1() and h2(). Then f(z) = f(go−1(g(z))) =
go−1(g(f(z))) = go−1(f(g(z))). Therefore f(go−1(w)) = go−1(f(w)) generally
[where w = g(z)] and l(z) = h1(f(g

o−1(g(z))) = h1(g
o−1(f(g(z))) = h3(f(g(z))

where h3() = h1(g
o−1()). According to the criterion for a root function, f(g())

is the required root function for the set of possible analytic functions l().
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By considering the example when R1 is z → z2, R2 is z → z3 and I was
expecting the intersection to be given by the root function z → z6 (R3).

Returning to functions in A there is a kind of discreteness in them which
is exemplified by the fact that there does not appear to be a function f() such
that z4 ≻ f() ≻ z2 and z2 ⊁ f() and f() ⊁ z4.

11.1 old work

A common type of equation defining behaviour around a singular point is

f(z) = g2(f(g1(z))) (79)

where g2() and g1() are right-unique functions. [ what is it that makes g2(z) =
z + 1 and g1(z) = z/e a trivial or not useful example of (79) for f(z) = ln(z)
whereas g2(z) = z + 2πi and g1(z) = z is not? it doesn’t relate one branch
to another and is interpretable (f(z) = 1+ f(z/e)) without considering f() as
multivalued. Is it that both g2() and g1() are not the identity? Try using two
equations (29) and f(z) = g2(f(z)). First look at algebraic functions. ]

Here the equality is between two sets of values. The more general form

f(z) = g2(z, f(g1(z))) (80)

occurs later. [ the examples of this all came from combining solutions of (79)
with z using arithmetic functions.]

Most of the examples above are actually special cases of

f(z) = g2(z, f(z)). (81)

***************************
A direct proof seems difficult. Suppose z1 ̸= g1(z1). The condition for fs()

to have no singular point at P , (z1, fs(z1)), using (31) and (35), is that there is a
neighbourhood N of P such that for all points (z2, fs(z2)) and (z3, fs(z3)) ∈ N ,
z2 = z3 ⇔ z2 ∼ z3. This reduces to

∃N of P {∀(z2, fs(z2)), (z3, fs(z3)) ∈ N [∃n ∈ N[z2 = gon1 (z3))] ⇒ z2 = z3]} .
(82)

To establish this it is sufficient to choose N so small that if z3 is included by
being sufficiently close to z1 that none of g1(z3), g1(g1(z3)) etc. are included
i.e. the images of N under g1() repeated any number of times must not overlap
N itself.

The above arguments have assumed that g1() is single valued. It should be
possible to do this with a multivalued g1() because then z1 = g(z2) just means
that z1 is one of the values of g(z2). The equivalence classes are now more
complicated to construct but the principle is the same.



44 John Nixon

Therefore these special fundamental solutions of (29) that also satisfy (35)
will be called the special solutions of (29). The reason that the word “simplest”
is no longer used is that this would be a constant function. Let f ∗

s () be another
function that satisfies the conditions on fs() above then f ∗

s (z) = h∗(fs(z)) for
some function h∗() in A. Also f ∗

s () has the same singular points as fs() (which
is a requirement of a special solution of (29)), which by Lemma (6.6) is true
if and only if h∗() has no singular points i.e. by Theorem 82 h∗() is a bilinear
function. Therefore

[ If h∗() is any function without a singular point (i.e. a bilinear function
by Theorem 82) then by Lemma (6.6) f ∗

s () will have singular points precisely
where fs() does and f ∗

s () will also satisfy (35) i.e. the set of special solutions

of (29) must include a+bfs(z)
c+dfs(z)

if fs(z) is included for all a, b, c, d ∈ C. Can there
be any more? Any other such solution must take this form with a different
function h∗() that will be not bilinear and so must have at least two singular
points somewhere and by Lemma 6.6, in accordance with the above argument,
h∗(fs(z)) must have extra singular points. This contradicts the above argument
that h∗(fs(z)) must have no singular or inversion point except when z satisfies
z = g1(z).]

Theorem 11.4. The set of special solutions to (29) i.e. those that also
satisfy (35) have singular points only where z = g1(z) where g1() is as in (29).

This set is the same as the set a+bfs(z)
c+dfs(z)

for arbitrary a, b, c, d ∈ C if fs(z) is

itself a special solution of (29). Any solution to (29) can be written as h(fs(z))
for some special solution fs(z) for some function h() in A.

[perhaps there are important ideas here but needs working out! If g1()
is not a linear function the equation z = g1(z) that determines the singular
points could have many solutions, [and g1() itself could be described by another
equation of the type (29) or (81) etc..] In such a case the original equation
(29) for f() together with other similar equations to determine g1() etc. could
determine behaviour at a set of singular points simultaneously. In such a case
it might be a good idea to try to solve for the singular points and then with g1()
replaced by linear functions that give the same singular points, analyse each
separately using the results in Section 9 or extensions if necessary, and then
try to reconstruct the original function f() but note example (67) indicating
that in this case an infinite number of singular points can sometimes occur.]

Now consider iteration applied to (80) which gives

f(z) = g2(z, g2(g1(z), f(g
o2
1 (z)))) = ... =

g2(z, g2(g1(z), g2(g
o2
1 (z), g2(g

o3
1 (z), g2(g

o4
1 , . . .) . . .) = [g2((), f(g1())]

on(z)
(83)

where g2 appears n times in this expression. Now suppose gon1 () is the identity
function : z → z then

f(z) = g2(z, g2(g1(z), g2(g
o2
1 (z), . . . g2(g

o(n−1)
1 (z), f(z)) . . .). (84)
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This is last expression depends independently on z and f(z) through the func-
tions g2() and g1() and can therefore be written as k(z, f(z)) i.e. (84) can be
written in the form (81) for different g2() and g1(). Also it is conceivable that
(84) for some value of n takes the simpler form (29) again for different g2()
and g1(). In either of these cases the special solution of the respective iterated
form of (80) can be defined as above. If this can be done for both cases the
following example suggests this might define the special solution for (80) itself.

There are many results that can be obtained relating the solution sets
of (79) with different values of g2() and g1(). If (79) holds then the same
relationship holds with f() replaced by k(f(l())), g2() replaced by k(g2(k

o−1()))
and g1() replaced by lo−1(g1(l())). Making these substitutions gives the same
relationship with the function k() applied to both sides and expressed in terms
of the independent variable w given by z = l(w). For example suppose k(z) =
az+ b and l(z) = cz+ d then the function f ∗(z) = k(f(l(z))) = af(cz+ d) + b
satisfies f ∗(z) = g∗1(f

∗(g∗2(z))) i.e. (79) with g∗1(z) = ag2((z − b)/a) + b and
g∗2(z) = (g1(cz + d)− d)/c.

If in equation (79) go−1
2 () is applied to both sides and the result expressed

in terms of the variable w = g1(z) then the same relationship holds with g2()
replaced by go−1

2 () and g1() replaced by go−1
1 ().

The inverse functions of both sides of Equation (79) again give an equation
of the same form showing that f o−1 satisfies the equation of the same form but
with g2() replaced by go−1

1 () and g1() replaced by go−1
2 ().

In these general arguments, it has to be borne in mind that f o−1(f(z))
could have several components and is not necessarily just the identity function
as in section 1.
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