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Towards a Theory of Analytic Functions

Section 7 is still rather a mess but it is getting clearer. Sections 10 and
following are just bits and pieces that are mostly probably not needed.

Abstract

Multivalued analytic functions (or relations) are defined as mappings
of the Riemann Sphere to itself that satisfy the Cauchy-Riemann equa-
tions, and are not constrained by artificial boundaries or constraints on
values. They are believed to be determined uniquely by their behaviours
at all their singular and inversion points, which is a generalisation of a
result of the previous study of the algebraic case. The behaviour at
these points is determined by simple equations that only make sense in
the context of multivalued functions and can describe behaviour near
essential singular points as well as simple poles and branch points as-
sociated with algebraic functions. Many examples are discussed. It
is suggested though not yet proved that the set of analytic functions
forms a large algebraic structure that is closed under the operation of
taking limits in addition to the operations that give closure to the set
of algebraic functions.

The approach will be intuitive and non-technical showing how to
handle multi-valued functions in calculations and the topological prop-
erties of the surfaces representing them.
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1 Introduction

This document is a work in progress. As such it is incomplete and still has
errors and omissions. When brought to a state where I cannot easily find any
improvements it will form my next document on Complex analysis. Now it
looks as if there are going to be so many ideas that I can’t just finish it as a
paper, it is instead a sort of discussion document.

A strange feature of this study is that as it develops sections get expanded
with different material so the section headings get out of date, and it is not
easy to get the ideas in the most sensible order and keep it that way. The
structure is still obviously not right. Thus there are many places where
there are forward references. Comments are welcome. Please send them to
john.h.nixon1@gmail.com (see also https://www.bluesky-home.co.uk for my
other papers and ideas)
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The key differences between this approach and the standard approach to
analytic function are (1) Basing all the arguments on the closure of the com-
plex plane C (the Riemann sphere) instead of the complex plane C. (2) The
different definition of singular points based on topology. (3) The treatment of
mappings C — C as multivalued functions without restricting their domains.
This requires a different interpretation of equations which usually involve sin-
gle valued quantities.

My earlier work on algebraic functions when considered as multivalued func-
tions z — w where z and w are in the Riemann Sphere C U {oo} = C seemed
to indicate that their topology determines them uniquely apart from a few
parameters. The topology of something is all the properties of it that are not
changed by any continuous stretching without breaking and has been described
as rubber sheet geometry. More precisely, algebraic functions are determined
by the behaviours of these functions at their singular points and their locations.

The main theme of this paper is to investigate how this extends to “ana-
lytic” functions C — C that can be multivalued. The precise definition of this
is not yet clear but the symbol A will be used for the set of functions con-
cerned. The topological definition of a singular point used in my earlier paper
[2] has been replaced by an equivalent analytical one. With multivalued func-
tions, equations involving them have to be treated differently. Many examples
are studied then some general theory is developed. Treating them like equa-
tions for single-valued quantities results in equations satisfied by the common
singular points for their solutions. The complete set of singular points almost
determines an analytic function uniquely. The idea of the special solution of
an equation arises that has the minimum number of singular points.

Apart from the above, the notion of a singular point is slightly changed
from my earlier work: the very special function f : z — 1/z that motivated
the introduction of the point oo described in [2] (the Riemann Sphere) so as
to make it left-unique as well as right-unique, is now not considered to have
a singular point because of this. The point (0,00) is now called an inversion
point of f().

Another important theme, though not yet fully developed, is that func-
tions in A form a very complex algebraic structure that extends the algebra
of algebraic functions in [2] by adding to it extra closure operations i.e. the
passage to the limit of a sequence of such functions, and the solutions of equa-
tions of any type. This allows differentiation and integration to be included. If
something like induction could be done it might provide another way to prove
propositions.

The [4] says ‘Each analytic function is an “organically connected whole”,
which represents a “unique” function throughout its natural domain of exis-
tence.” and I think this is the approach that should be followed.

Functions in A are in general multivalued (i.e. are relations) and therefore
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the general theory of relations must play a major role. Specifically, the concept
of > on functions in A which could be read as “could start with” for example
the function given by sin(z%) could be defined starting from 2% or from 2* and
then applying another function .A. This has its origin in relations generally,
and for this reason some of its basic properties needed to be established before
applying them to functions in 4. The layout of the paper is as follows:

Notations and terminology including concepts from relations on an arbitrary
set

A description of the closure operations with examples

A motivating very simple example of the equation mentioned above

A look again at algebraic functions and characterising power functions
Examples of functions in A and characterising their singular and inversion
points

Properties of singular points

Solutions of equations and special solutions

1.1 General notations and terminology for relations

Relations generalise the concept of a mapping or function to the multivalued
case. For an arbitrary set S a relation on S is a subset of S x S. It will be
useful to collect a few results, terminology, and notations involving relations
here. The usual logical symbols /(typed over what it applies to) or =, V, 3, €
N\, V, =, < mean “not”, “for all”, “there exists”,“in”,“and”, “or”, “implies”, and
“if and only if” respectively. The Boolean values 0 representing “false” and
1 representing “true” will be used throughout and the following equivalences
occur frequently

AVB=0 & A=0AB=0

ANB=0 & A=0VvB=0 (1)

AVB=1 & A=1vB=1

ANB=1 & A=1ANB=1

for any Boolean variables A and B. Note that equality of relations is the same
as logical equivalence often written as <.

A relation R is left-total if Vb € S {3a € S[aRb]} and likewise right-total if
Va € S{3b € S[aRb|}. R is left-unique if Ya;, as,b € S[(a1 Rb A asRb) = a3 =
as] and likewise right-unique if Va, by, by € S[(aRb; A aRbs) = by = by]. These
meaning of these four terms seem to me to be immediately clear. The relation
R is right-unique respectively left-unique < R™! is left-unique respectively
right-unique, and likewise R is right-total respectively left-total & R™! is
left-total respectively right-total. These terms replace the older terms: “one-
to-one”, “single-valued”, “serial”, “surjective” and “onto”.
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Apart from the operations of Boolean algebra that apply to all sets, exten-
sive use will be made of composition (denoted by juxtaposition) and inversion.
The composition of Ry with Ry, Ry Rs is defined by

Va,b € S[aR 1 Rsb < Jc € S[aRyc A cRyb]|. (2)

Note this is the logical order and corresponds (in the case of functions) to do
Ry then do Ry i.e. Ry(Ri(x)). Then it follows that composition is associative
and can be used to define the nth compositional power of a relation R for
non-negative integers by R® = I (the identity relation I is defined by Va,b €
Slalb < a =b]), R' = R, and R"*' = R"R and extend it to negative integers
to give R~ which is defined to be (R™1)" = (R™)~! which is also easily shown
where the inverse of R written as R~! is defined by Va,b € S[aRb < bR 'al.
(Note the corresponding operation for functions is written with an o before the
integer exponent to distinguish this from the usual exponents, but this is not
needed in the context of relations on an arbitrary set S. In case of confusion
I will put the o back in).
Next follows two results that relate left-uniqueness to composition.

Lemma 1.1. If Ry is not left-unique and Ry is left-total then Ry Ry is not
left-unique.

Proof. If Ry is not left-unique then
da,b,c € S[a # b,aRic,bR;c].
Also if R, is left-total then
Ve € S[3d € S[eR.d]],

so choose e = ¢ then there exists a, b, ¢, d such that aR,c, bRc,cRod and a # b
so a1 Rod and bR Rod so R1 Ry is not left-unique. O

Lemma 1.2. If Ry is right-unique and Ry is right-total and Ry is not left-
unique then Ry Ry is not left-unique.

Proof. R is not left-unique i.e.
Ja,b,d € S[a # b,aRad, bRayd|
and R; is right-total i.e.
Vf e S[3e € SleR: f]],

so choose f = a then
361 € S[elRla]
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and choose f = b then
362 S S[egRlb]

so e; Ry Rod and es Ry Rod. But if Ry is right-unique
Va,b,c € S[(aR1b,aRic) = b = (]

so if e; = eg then a = b which is not true therefore e; # ey. This shows that
R R is not left-unique. O

By introducing the inverses of these relations, equivalent results can be
obtained.

The empty relation where R = () satisfies Va,b € S[—aRb] and similarly
Va,b € S[aRb] defines the total relation 1 and the negation symbol will also
be applied to relations giving their complement so that R U -R = 1 and
RN =R = (. The following properties hold (R; U Ry)R3 = R1R3 U RaRs.
(R"H™ ' =R, (RiRy)™" = Ry;'R;'. There is a general relation on relations I
denoted by >, that has a simple definition based on composition,

R~ Ry & HRg[Rl = R2R3] (3)

and could be read as “is more or equally complex as” or “can start with”,
which will probably not be clear until analytic functions (that actually are
relations) are discussed. Its inverse could be denoted by < means “is simpler
or equally complex as”. Any relation R satisfies

R>1 (4)

even if R is the empty relation (), and () = R for any relation R. It is clearly
reflexive (R > R) and transitive i.e. (Ry = Ry) A (Ry > R3) = (Ry > R3).

1.2 Functions on the Riemann Sphere

This is an attempt to extend the treatment from what I defined as algebraic
functions on the Riemann Sphere to all such functions in some sense.

In [2] the point oo was added to the complex plane to get the Riemann
Sphere so that functions always have a value. This works for algebraic functions
where continuity and differentiability hold for a function f() even if f() and
its derivative go to oo there for example z — 2 /9 for p,q € N,q # 0 at z = 0.
However this does have some unusual consequences for example z — exp(1/2?)
at z = 0 which is 0 and oo because exp(co) is 0 and oo (this follows from
e* = e%e" if z = x + iy where if z and y approach oo with x/y is constant,
the result is 0 if + — —o0 and oo if *+ — 00, co and —oo are the same
point approached from opposite directions). These are examples of essential
singular points for non-algebraic functions where the number of terms in the
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series about the singular points is infinite (Laurent series for finite singular
points and power series for singular points at co).

Next follows a result that seems so fundamental that it should be perhaps
mentioned here. It is connected with the completion of the complex plane to
the Riemann Sphere C and although I am probably not able to express or prove
it properly, I present it as a theorem. Consider a function in A f : C — C
with a single singular point at zy and a circuit described in z that is close to
2o in C. The image of this not a circuit in f(z) that is described just once in
the same direction. Suppose there are no other singular points in f() then this
can be continuously deformed past oo without changing the discrete topology
to a small circuit in z at some other point z; with a corresponding image in
f(2) where again the result is not a circuit described just once in the same
direction. This small circuit in z can be made as small as you like while not
crossing any singular or inversion point with the same result, and this would
imply a singular or inversion point at z; # zg of the corresponding type. This
contradiction proves that

Theorem 1.3. An function in A defined on the Riemann Sphere C cannot
have only one singular or inversion point.

Roughly this includes is any function, single or multivalued, that can be
expressed by a formula that does not involve splitting the complex variable
z into parts e.g. real and imaginary or modulus-argument etc. or is the
solution of any problem defined using calculus involving such functions. See
the closure operations below. They are differentiable and therefore infinitely
many times differentiable in the extended sense (including co) wherever they
are defined. They have no boundaries. The main difficulty with my approach
compared with the standard approach to complex analysis is how to deal with
multivaluedness. They are generally multivalued which can cause confusion as
the examples show. This also affects how equations involving these functions
are handled. Such equations frequently characterise singular points which is
a major theme. There are closure operations that generate new functions
from old ones and they start from the constant function and being infinitely
differentiable i.e. analytic, so this term is used. The phrase analytic relations
could be used because they can be multivalued, but I will stick to using the
term analytic functions because of its common use. The term “analytic” is
used because these functions in A will be closely related to complex analytic
functions as this term is usually used.

The function exp() plays a very special role. It uniquely satisfies exp(0) =
1 and exp/(z) = exp(z). It satisfies exp(z) = the positive real value of e*
whenever z € Z and e is the base of natural logarithms, and exp(z) is equal to
the positive real value of e® for other real x and is e”(cos(y) + isin(y)) when
z = x + 1y thus there is a distinction between e* and exp(z) with only the
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former being multivalued for non-integer and finite values of z. However due
to the common usage that these are the same, if there is not likely to be an
ambiguity e* will be used when more properly exp(z) should be used.

Together with its inverse In(), exp() can be used to define the general
exponent function by

a® = exp(bln(a)). (5)

To show that this in general has the correct number of values (¢ where
b = p/q and ged(p,q) = 1 ie. p/q is in the lowest terms possible, with
pE€Z qgeN qg>0)letn € Nwith 0 <n < g—1. Upon dividing
np by q let np = sq+r where r € Nand 0 < r < ¢g—1, and s € Z.
nip mod ¢ = ngp mod g = (ny — ng)p = tq where t € Z. From this it follows
that ¢|(ny — n2)p and because ¢ t p it follows that gq|(n; — ng) so ny = ny
because ny and ny are in the range 0 < ny,ne < ¢—1and |n; —ny| < g — 1.
Therefore the mapping k() defined by k : n — np mod ¢ is left-unique and
generates a permutation of the integers @ = {0,1,...q— 1}.

Therefore the fractional part of {np/q} for n € Q is {n/q} forn € Q in a
different order and the sets exp(2minp/q) and exp(27min/q) where n € Q) are the
same but appear in a different order. Therefore the set of values of exp(bln(a))
for one particular value of In(a) is exp(£(In(a) + 2min)) where b = p/q and is
exp(® In(a)) exp(2minp/q) = exp(% In(a)) exp(27in/q) therefore the expression
exp(bln(a)) has all ¢ values and no others and can be used to define a’.

A peculiar consequence of dealing with multivalued expressions is an ambi-
guity that can arise when doing calculations that involve them. Consider the
following paradox which is probably one of the simplest examples of its kind:

™ = —1= 21 =2In(—1) = In((—1)%) = In(1) = 0! (6)

While forgetting that In() is multivalued it is too easy to carry out calculations
like this and arrive at absurd conclusions. If for each instance of In() it is
remembered that any multiple of 27 can be added to a result to give another
value of the function, the following results are obtained:

2In(—1) = 2(mwi + 2nymi) = 2wi(1 4 ny)
In((—1)2) = 2nymi (7)

which are the same where nq,no are arbitrary integers. The logic is faulty
in @ where a multivalued expression is treated as a single value. Consider
the generalisation In(a®) = bIn(a). If bln(a) represents one particular value of
this multivalued expression, the complete set of values can be written as using
2ming + b(In(a) 4+ 2ming) i.e. bln(a) + 2wi(ng + bngy) for all ny,ny € Z where
the expression 2min; can be added because it is the In of something and the
expression 27ming can be added because In(a) is multivalued in the same way.
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Therefore the complete set of values of bln(a) can be written as

qny + pn2>

. (8)

bln(a) + 2mi(ny + bny) = bln(a) + 2mi (
where b = p/q and p and ¢ can be chosen to be coprime, so the numerator
in the parenthises can be 1 by appropriate choice of n; and ns, therefore it
can be any integer by multiplying both n; and ns by that integer and thus
exp(bln(a)) has the ¢ distinct values it should have. If 2mwin; had not been
added, so that n; = 0, pny can be divided by ¢ to obtain integers r and s such
that pny = rq + s where 0 < s < ¢ then would have been

bln(a) + 2mi(r + s/q) 9)

and s would have still attained all its values because of the following theorem
in [3]:

Theorem 1.4. If a,b,c € 7Z then the equation ax + by = ¢ has a solution
for x,y € Z if and only if the greatest common divisor of a and b divides c.

Therefore there is no problem with the multivalued nature of a® if b is
rational except if the exponent is regarded as a repeated multiplication when

1\ b
b is an integer. For example consider the expression (% + (9) 2) . The inner

4
expression has values -1 and 2, so taking all possible values gives (—1)*2(*=*)

for 0 < k < b whereas just the values (—1), 2° should occur. A related example
is what are the values of 1'/2 + 11/2 = (£1) + (£1)? If these two instances
have to be the same the result is +2 otherwise 0 can be included. The general
principle it seems to me is to take note of when two or more instances of the
same multivalued expression occur in a formula have a common origin then
they have to have the same value, otherwise they are independent.

2 Defining the algebra of functions

The set of algebraic functions as defined in [2] includes the constant functions
2z — c for any ¢ € C and is closed under the following unary and binary
operations on functions: union, composition, inversion, addition, subtraction,
multiplication, division, differentiation with the exception that the inverse of
the constant functions do not exist. The identity function z — z obtained
by integrating the constant function equal to 1. The subtraction operation is
merely the addition of a negative and so is not strictly required. The inclusion
of division is needed to ensure that the special function z — 1/z is included.

The arithmetic operations just refer to the operations f(2) = ¢1(2) * g2(2)
for defining f() in terms of g;() and g2() where g1() and g¢2() are functions in
A, then so will f() where * is +, —, X or =.
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The absence of integration as a closure operation for algebraic functions
suggests the extension of these ideas to include it as an operation that gives
closure. This requires the familiar functions In() as the integral of 1/z and its
inverse exp() to be included.

However including instead the limit of a sequence of functions can replace
including derivatives and integrals. Then differentiation does not need to be
included as a closure operation because a derivative is the limit

f'(z) = lim

h—0

fz+h) = [(2)
N (10)

of a difference that is already included. Also an integral is just the limit of a

/azf(t)dtzggo{%gf[aﬂ(Z;a)]} (11)

which is already included.

It is also desirable to include all functions that are definable as solutions to
equations of any type such as differential equations, integro-differential equa-
tions, difference equations. There are some examples later in the paper.

Therefore the closure operations involved the set of functions in A are as
follows:

« union (U) i.e. from a set of functions, their union is found i.e. the graph
of the union is just the set-theoretic union of the graphs of the separate
function.

« composition and inversion (o or juxtaposition,®~!)
« the four arithmetic operations (+, —, X, =)
« taking the limiting value of a sequence of functions

« solution of equations needs to be as general as possible and must include
obtaining the special solution for f() from g;() in and obtaining the
special solution for f() from go() in (30).

I was hoping that something like a universal base for computability might
arise if this algebra could be made complete and correct.

Closure is a very attractive concept because it is possible to prove a propo-
sition for every element of the algebra by a kind of induction by proving it for
an initial set of special elements and proving that for every closure operation,
it holds for the result of the closure operation if it holds for the elements to
which the closure operation is applied. In this case if P is any proposition true
for all elements of the algebra if and only if P is true for the special elements
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(the identity and constant functions).

PIAHOINA Pf20)] = Pl U f2)]
PlfO] = P[f()]

PIHOIA PLf0)] = PlAi(f0)] (12)
PIAiOIA Pf20] = P[fi() * f2()] where x = +, —, x, +

Vi € N{P[fzg]} = P[lim; 0 fi()]

POl = PISIFO]]

The first three involve only sets and relations. The limit operation allows
all operations of calculus to operate within this algebra. Finally the solutions
of equations includes simultaneous equations of any type and of course all these
should be interpreted recursively so eg any equation involving given functions
that are defined as above has solutions that are to be included etc.

Note that the limit of a set of continuous functions can be discontinuous in
the real domain (Fourier series provide many examples), and this extends to
evaluating a function in A4 on a path in C that goes through a singular point
that arises as a result of the limit taken.

Functions in A with a line of discontinuity can be extended i.e. analytic
continuation ([I] Chapter 12) can be applied to extend the function on both
sides of the boundary resulting in a multivalued function where this line of
discontinuity is removed.

The obvious step is to define composition and inversion as for binary re-
lations in general. This gives rise to compositional powers of functions eg
f(f(2)) = f%(2) defined as for relations in general. The symbol o is used to
indicate the compositional power that follows it because o is sometimes used
to indicate composition, and this distinguishes the inverse of a function from
its reciprocal.

When working with multivalued functions, the equivalent of the function
value is now a set of values and equality between relations is of course the
equality between the two sets of values. This has consequences when manipu-
lating equations with multi-valued functions in A.

Perhaps this simplest closure operation is that of union. A union is simply
the union of the two sets of pairs (z,w) defining each of the functions in the
union. The concept of a union was not mentioned much in my previous paper.
The simplest example of a union is when f(z) = (22)!/? which is the union of
z and —z which consists of pairs (z,2) and (2, —z) for all z in C.

Suppose a single component function in A maps p values each to the same
q values € C. Does every single component function in A have to be like this,
with p or ¢ allowed to be co? In the two set of values, each member of a set
is equivalent to any other member.

An function f() in A has a single component if and only if for every pair of
points P; and P, in C x C in the graph of f() there is a continuous and analytic
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curve starting at P; and ending at P, at each point being in the graph of f()
and not including any singular point of f() i.e. every such point is connected
not via singular points to every other such point within the graph of f().

Related to “union” is the concept of a component. A component will be a
single analytic surface i.e. a function in A that itself could be multivalued. The
number of components an function in A has will be an important property of it.
Generally, only solutions of equations which consist of a single component are
likely to be of interest. If a set of single components each satisfy an equation of
the type considered here, then so does their union. Unless otherwise stated an
arbitrary function will refer to a single component. The operation of extracting
all the components from a union will probably be needed.

An function in A can be a union of smoothly differentiable components
that each consist of a single continuum of points (z, f(z)) € C x C provided
there is an extension of the notion of differentiation from C to C. Finite and
countable unions will surely be needed.

Singular points specified by (z, f(z)) are points in the analytic surface where
a small circuit round z is not mapped into a small circuit round f(z) in the
Riemann Sphere. Another way to say this is that a singular point (z, f(2)) is
any point about which for all neighbourhoods N of (2, f(z)) in C x C however
small, the graph of f() intersected with N is not topologically equivalent to
an open disk. In such a case one value of z will correspond to more than one
value of f(z) or vice versa in N, see Section @ Importantly, singular points
are not to be confused with points where f(z) is oo though these may often
coincide. Definition: A singular point at (z,w) is finite iff z # oo.

3 A simple example

Consider about the simplest example of an equation

f(z) = f(=2) (13)

for a right-unique function f(). This is satisfied by f1(2) = 2? and by fo(2) = 24
and in fact any function of z2. This suggests that the solution f(z) = 2% has
special significance and will be called a special solution.

Equation (13| can be written as z; = —zp = f(21) = f(22). Suppose the
condition[I3]is required to be an inequality unless equality is explicitly required,
then in the above case

f(Zl) = f(Zg) &z = t2s. (14)

This strengthened condition eliminates 2* from being a solution because then
f(z1) = f(22) & 21 = £25 or z; = +izy but the special solution of does

satisfy (14).
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Singular points are defined to be points P = (z1,w; = f(z1)) where the
function f() is not behaving on any very small length scale surrounding P as
a simple one to one correspondence. Thus a singular point is defined such
that the function is not locally 1 to 1 there. Then minimising the number of
singular points requires f() to be locally 1 to 1 wherever possible. In this case
it is not possible to have f(z1) = f(22) < 21 = 23 (which would imply no
singular points anywhere) because of , but is next best because the
possible arguments (and singular points) have to be treated in pairs (z, —z).

The condition for the absence of a singular point at P is that for some
neighbourhood N of P

n =20 f(2) = f(2), (15)

holds for all ((z1, f(21)) and 29, f(22) € N. Using this gives 21 = 20 =
f(z1) = f(22) = f(z1) = f(—22) = 21 = —29 which implies z; = 25 = 0 or occ.
Therefore the singular points in solutions of are only at z = 0 and oo
which is where 22 has singular points which shows that the number of singular
points for solutions of has been minimised by using instead the condition
(14). Note Theorem shows that no analytic function can have just one
singular point.

Now suppose f() satisfies [14] then introducing the function k() by k(z) =
f(2'/%) then is equivalent to z; = 20 & 21/2 = :I:z;/2 & f(zi/z) =
f(:l:z;ﬂ) & f(ziﬂ) = f(z;/Z) < k(z1) = k(22). Therefore the condition for
the absence of a singulaint for the function k() holds everywhere. Therefore

k(z) = %% by Lemma [4.2[implying f(2'/?) = % 50 f(2) = (clifliz

ct+dz ct+dz

4 basic theory

Theorem 4.1. Every function f() € A reaches every value f(z) € C i.e.
is right-total for some z € C unless f() is a constant function.

Proof. This follows from the corresponding property of algebraic functions
(P(z,w) = 0 always has a solution for z given w for any bivariate polyno-
mial P) and the fact that functions f() € A are continuous and are limits of
sequences of algebraic functions which are all continuous. O]

Closure under inversion requires every function in A to be left-total too.
An interesting case occurs if the point that is the solution of such an equation
approaches, under the limit, a singular point of the limit function. For example
if the limit function is f(z) = exp(1/z) and the solutions approach z = 0 as
would happen if w = 0. This works because f(0) is 0 and oo i.e. both these
values are attained by f().
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Lemma 4.2. An function in A with no singular points and no inversion
points is a linear function.

Proof. The absence of a singular point at z = oo for a function f() implies a
neighbourhood of 0o (a large circle in the complex plane but a small circle in the
Riemann Sphere) in z maps in a left-unique manner locally to a neighbourhood
in w say centred on wy = f(00). If wy # oo then 1/z ~ a(w — wy) for very
large |z| therefore dw/dz = —1/az* — 0 as z — oo. Similarly if wy = oo
a small neighbourhood in 1/z about 0 maps to a small neighbourhood round
1/w at 0 so 1/z ~ b/w therefore dw/dz = b at (00, 00) and if there are no
singular points and no inversion points anywhere in w(z) then dw/dz is also
everywhere finite and analytic there, so by Liouville’s theorem (see for example
[1]) dw/dz is constant so w = a + bz where a and b are constants. O

Theorem 4.3. A function in A with no singular points is a bilinear function

given by f(z) = Zig;

Proof. Let f(z) = w be an function in A with no singular points. Then apply
a bilinear function b() to w such that b(f(0)) = 0,b(f(1)) = 1,b(f(c0)) =
oo. This can be done uniquely (see [I] section 33). Then by Lemma
b(f()) has no singular points and maps, 0 — 0, 1 — 1, and co — oco. Also
b(f()) can have no inversion point because if some finite point zy — oo then
b(f()) would be not left-unique there and would have a singular point there
by Lemma contradicting the assumption. Therefore b(f()) satisfies the
condition of Lemma and must be a linear function i.e. b(f(z)) = a + [z
and f(z) = 0°"'(a + Bz) which is also a bilinear function. O

The changed definitions of singular points and the new definition of an
inversion point require some well-known theorems to be rephrased.

This is because “analytic” in the textbooks should be replaced by “right-
unique analytic and finite” in the terminology of this paper. This would make
the statements of theorems like the Cauchy integral formula slightly more
cumbersome. Also “entire” means “right-unique, analytic, and without any
singular points except possibly at z = oc0”. If a function is bounded i.e.
|f(2)|] < k for some k > 0 for all z € C then by continuity, it cannot be oo
at any point in C including at oo itself. Therefore Liouville’s theorem can be
expressed as

Theorem 4.4. If f() is right-unique in A, finite at every point z € C and
without a singular point at any point z € C then f() is constant € C.

Now suppose that f() is right-unique, analytic and none of its values are
equal to w € C at any point z € C and f() has no singular points with z € C.
Then f(z%—w is everywhere finite because f(z) cannot approach w arbitrarily
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closely (for otherwise at the limit point it would equal w and C is compact so
includes all its limit points) and analytic and has no singular points for z € C,
then by Theorem f(z;_w = ¢ € C, therefore f(z) is constant € C. This
proves that

Theorem 4.5. FEvery right-unique function ]1) € A without any singular
points where z € C, reaches every value f(z) € C for some z € C unless f()
s a constant € C.

5 Characterising singular points of algebraic
functions

There seems to be much repetition from the old paper here! [

The topology of an algebraic function clearly must involve the behaviour
at points that are not regular points where the behaviour is non-trivial. A
simple way to describe this is to imagine a small circle described around the
point (2o, wp) within the surface. Imagine it so small that no other points with
irregular behaviour are included. If this can be done it will have projections
down to both the z and w planes and if the circuit is complete ending where it
started, the projections will be circuits around zy and wq respectively described
p and ¢ times, or for non-algebraic functions, either p or ¢ may be infinite if
the corresponding circuit never joins up again. Such points (zg, wy) with either
p or g not equal to 1 are singular points and if p = ¢ = 1 the point is a regular
or non-singular point. Another kind of thing that can happen is when (zg, wy)
is at the intersection of two or more surfaces, which again implies (zg,w)
is a singular point. In general a singular point is where in a small region
surrounding it, the function surface(s) cannot be stretched so that it becomes
flat.

Using the methods I developed earlier [2] to locate singular points for
algebraic functions, suppose w = 2P/ where p,q € N then w? = 2P and
P =w?—2f =0 and OP/0z = —pzP~' = 0 = 2P~! = 0 which is false if
p=1 Ifp>1then 2 =0and w=0. Also IP/0w = qu?™! =0 = w? ! =0
which is false if ¢ = 1. Because % + g—ii—’; = 0 these conditions are equiv-
alent to ‘(11—1;’ =0oroo. If ¢ > 1then w =0 and z = 0. Therefore all finite
singular points are at (0,0) provided p > 1 or ¢ > 1 with the transformation
w* = 1/w,z* = 1/z giving the other one at z* = 0, w* = 0 ie. (00, 00).
Now suppose p > 0 and ¢ < 0 then the same argument gives that all singular
points are at (0, 00) or (c0,0). In many examples of algebraic functions I have
studied, it is easy to miss a singularity with either z or w being co in addition
to the finite singular points. It is later proved that no function in A can have
just one singular point. |
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Consider f(z) = z'/P where p is an integer. Rather than describing this
behaviour simply by saying that it is expressed by a “winding number”, near
the branch point at z = 0, the idea is to relate f(z) to f evaluated at the “next”
branch of the function obtained by tracking f(z) continuously once round a
small circle surrounding z = 0 described in the anticlockwise direction until the
same point z is reached. This circuit in z will have to be described p times to get
back to the same value of f(z). This is because if f(z) = z1/? = r1/Pei/P then
f(2)P = z = re? with 0 < 0 < 27p. Let go(2) = €*™/P2 where p is a positive
integer. Then go(f(2)) = e2™/Prl/peil/p = y1/p(e2mici¥)1/p = pl/peif/p = f(2)
ie.

f(z)= 62”i/pf(z). (16)

In fact this equation, being an equation for a multivalued function, rep-
resents the equality of the two sets of values each being p in number, and
the equation generates a permutation of those p values. Equality of the sets
of values will be implied whenever an equality occurs between two multival-
ued expressions. This is a simple example of equations which now have to be
treated differently because the expressions are multivalued. This relationship
is a better way of describing this situation than in [2] because it just involves
the right-unique function g»() and no mention of topological concepts that are
not so easy to make precise. Thus equations involving multivalued functions
clearly cannot be treated as though the functions are right-unique and equa-
tions can be written down that would only have trivial solutions if they were
for right-unique quantities. For example from ({16]) one cannot simply deduce
that f(z) = 0 by subtracting f(z) from both sides and dividing by /7 — 1.
Obviously it is the first of these that goes wrong. The reason is that there are
then two instances of f(z) on the left hand side and it is not clear that these
are the same one therefore f(z)— f(z) has to be the set of every possible differ-
ence between the values of f(z). Therefore likewise any binary operation with
the second operand being multivalued should be avoided because the results
are not likely to be useful. However, well chosen functions could be applied
to both sides of a multivalued equation and be more useful as the following
examples show.

The function f(z) = z!/? is clearly not the only solution of (for example
f(2) = az'/? or f(z) = 2%/?). Raising to the power p gives the tautology
fP = fP so there is nothing that can be said about f? so every solution of
is the pth root of some function in A regardless of its other singularities. This
could be written as f(z) = h(z)'/? for an arbitrary function h() is the general
solution of . Any such function has a p-fold branch point at all points
where f = h = 0, and satisfies because (e>™/P)P = 1. In fact the general
solution can be written as the following union {f(z).e*™/? for 0 < j < p}
which is (f(z)?)"/P. This obviously satisfies and has p components in
general because each component is mapped to the next one by multiplying by
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e?™/P_ Tt could have fewer if some of them join to others. It is this example
that motivated the introduction of the concepts of a union and the components
of an function in A. A simple example is f(z) = z + 1 which is not a solution
of because it is not the p-th root of an function in A. It is not the pth
root of (z + 1)? which is the union {e*/P(z +1) for 0 < j < p — 1}. The
result of this can be written more succinctly as follows.

Lemma 5.1. Suppose a function f() € A satisfies for some p € N
then this is equivalent to

f(2) = h(=)"? (17)

for some function h() € A.

In this context a concept arises, made precise later, which could be called
the special solution of an equation. The special solutions of are solutions
fs(2) such that any other solution f(z) of can be written as f(z) =
fs(h(2)), so fs(w) = w'/P. This term will always be italicised to indicate this
meaning. As will be shown later, the singular point(s) associated with an
equation like is/are given by its solutions where this equation is treated
as an equation for a single valued quantity i.e. in this case where f(z) = 0 or
oo. Later it turns out that the special solutions can be parameterised by three
independent parameters or by a, b, ¢, d and are f(z) = (gj:—gi)l/ P The absence
of extra singular points is required in f() because if there was such a singular
point then this would result in a corresponding singular point in fy(h(z)) for
any h() without a singular point at the corresponding location i.e. for almost

every function h(). A similar result is the following

Lemma 5.2. If ¢ € N where g > 1 then

fz) = f(em/1z) (18)
for all z € C for some function f() € A if and only if
£(2) = h(=1) (19)

for all z € C where h() is some other function in A.

Note: if the first step in computing h(z) is to apply z — 2'/9, all ¢ values
must be included, giving a result which is a union of ¢ components.

Proof. Equation implies all ¢ values €™/ for 0 < j < ¢q — 1 have the
same value of f() and 27 is the same for all these. Also the distinct sets
{z,e?™ay efmilay  elaDm/az) for all z € C have the union which is C and
are disjoint. Thus any solution of on the Riemann Sphere C is of the
form (19) and any function of this form satisfies because f(e*™/1z) =
h((e*™/92)7) = h((e*™/9)727) = h(27) = f(2). O
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Again an argument motivating the concept of the special solution follows
which can be done easily by inverting and its solution and defining the
inverse of the special solution of to give the special solution of . In-

verting gives after renaming f°71() as f() where p = —q. Therefore
its special solution includes fs(z) = 277 in the 3 parameter family, and there-

fore also fs(z) = 2. Any solution of is the inverse of which is h(z7)
after renaming h°~*() as h().

5.1 Examples
5.1.1 Example 1

Suppose f(z) = (z — 20)? where ¢ is a positive integer. Here the only finite
singular point is at (zp,0). Introducing the variable s by s = z — zp, and f*()
by f*(s) = f(z) = s? then f*() satisfies (18). Therefore expressing this in
terms of f using the chain of equalities

f(2) = f(s) = f1(2™/9) = f1(*/1(2 = z0)) = f(e¥™9(2 = 20) + 20) (20)
i.e. f() satisfies
F(2) = (=) where gu(2) = 9= — ) + 2. (21)

This relationship just involves the right-unique function g;().

5.1.2 Example 2

Suppose a multivalued function satisfies
f(z) = TP f(ePm1z) (22)

which is a combination of and where p, g € N. It can also be reasoned
as follows: is equivalent to f*(z) = f*(e*™/9z) where now f*(z) = (f(z))P
or equivalently (by Lemma [*(z) = h(29) ie.

f(2) = (A(z7)'? (23)

for some arbitrary function h() € A.

Suppose both and are satisfied. This is equivalent to both
and holding. Then in h(z) must also be of the form h(z) = hy(29)
for some hy() € A (if it was not then ((19) could not hold). Then putting these
together gives which is equivalent to as above, and to both and
(19). These equivalences can be written as
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Theorem 5.3.

£(2) = mIF() A (2) = [(e702)
F(2) = TP A F(2) = ha)
£(2) = () &
() = e (e

(24)

This suggests that in general there are two auxiliary functions for an equa-
tion in A like to be denoted by fs1() and fs() such that the general

solution to an equation such as is fs1(h(fs2(2))) where h() is arbitrary in
A and the special solutions of (22)) have this form with h() being a bilinear

function giving the form
a+ bz1\ "
o= (S5 29

where in this case fo(2) = 2'/? and fi(z) = 2%

ek section checked to here 2025-(04-19 ootttk

If there are other singularities, equations like and will not neces-
sarily be exact but only asymptotically correct as the corresponding singular
point is approached. For example in if z = (—b/a)/?+ € then f(z) can be
expanded as a power series in € in which terms higher than the first contribute
so that the asymptotic behaviour near ((—b/a)'/?,0) is affected by the singular
point at (0,0).

5.1.3 Example 3

The ideas in Equations and can be combined by considering the
solutions of A .
f(z) = TP (T2 — 2) + 2). (26)

Introducing the new variable s = z — 2y and the new function f*(s) = f(s+z2o)

then becomes . ‘
f*(S) _ 627rz/pf*(627rz/q8) (27)

whose general solution is f*(s) = (h(s%))"/? i.e. therefore the general solution

of [26) is f(2) = [h((z — 20)*)]"/7 ]
As would be expected (and is justified later) the singular point(s) of f()
are given by

1. where the argument of the p-th root i.e. h((z — 29)?) = 0 or oo
2. where (z — z9)? is a singular point of h()

3. where z — 2 is a singular point of the ¢g-th power function which is at 0
and at oo so z = zg, 00.
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For the case where h() is the identity function, the second singular point no
longer exists and the first and third of these singular points coincide at z =
20,00 and f(2) = (z—2)?? and the winding number ratio is p : ¢ in the earlier
description.

6 Definition and properties of singular points

In the examples above the precise definition of singular points and many prop-
erties they have, have been hinted at. In this section these are described in the
general context in which the function f() € A is not necessarily an algebraic
function. In all these definitions, a neighbourhood of a point (z,w) € C x C
is an open set containing (z,w) in the cartesian product topology.

These results depend on general properties of mappings right-unique versus
multi-valued, and left-unique versus many-to-one. These properties can be
defined such that they are local to a particular point as follows.

Definition 6.1. The function f() is locally left-unique at P = (z, f(z)) if
and only if there is a neighbourhood N of P such that for every pair (z1, f(z1))

and (z2, f(z2)) in N, 21 # 20 = f(z1) # f(22).
and likewise

Definition 6.2. The function f() is locally right-unique at P = (z, f(2)) if
and only if there is a neighbourhood N of P such that for every pair (z1, f(z1))

and (22, f(22)) in N, f(z1) # f(22) = 21 # 2.

Definition 6.3. f() has a singular point P at (z, f(z)) if and only if for all
neighbourhoods N of P there exists (z1, f(z1)) € N and (z2, f(22)) € N such

that either [z1 # zo and f(z1) = f(29)] or [z1 = 22 and f(z1) # f(z2)].

A statement equivalent to definition is to require this condition only
for all neighbourhoods intersected with a specified neighbourhood of P however
small it is. This makes it clearer that the condition is a local property of the
behaviour at P. This is the same as saying the condition that needs to be
satisfied for the absence of a singular point of the function f() at the point P,
(z, f(z)) is that there exists a neighbourhood N of P such that

V(z1, f(21)), (22, f(22)) € N[z1 = 22 & f(z1) = f(22)] (28)

i.e. f() is left-unique and right-unique within N. This condition is very compli-
cated to work with. A simpler equivalent form can be derived from it roughly
as follows. Because there is no limit to how small the neighbourhood N can
be (except that it cannot consist of the point P alone having no size because
this is not an open set), one can write z1, 2o & 2z because these can be made
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arbitrarily close to each other. By making N sufficiently small about P, the
condition in square brackets can be made to be true unless the number of solu-
tions of f(z1)— f(22) = 0 within N is just onei.e. z; = 2z at P and is more than
one in N other than at P itself. This is because a very small neighbourhood
N of P is then a single disc and so no more than one value of z, can be within
N for a fixed z; and satisfy f(z1) = f(z2). Therefore the whole condition for
the presence of a singular point at P is false unless the number of solutions
of f(z1) = f(z9) changes at P. This can happen in two ways first when P is
an intersection point of two surfaces in the graph of f() (whether in a single
component or not), and secondly when P is a point where the first derivative
f'(2) is 0 or oo which prevents f() being one-to-one in an infinitesimally small
disc surrounding P. In the first case, to find the singular points (z1, f(21)),
solve f(z1) = f(z2) and z; = zy simultaneously to find the non-trivial solu-
tion (it holds everywhere trivially) by first eliminating 2z, and introducing f;()
and f»() as two branches of f() to get fi(z1) = fa(21). This works provided
these equations are not consistent everywhere which would happen if f() was
left-unique and right-unique which would make f;(z) = f2(z) hold everywhere.
Curiously there may be a connection between these ideas because in the case
f(z) = 2% it gives 0 = f(21) — f(22) = 27 — 22 = (21 + 29)(21 — 22) giving
z1 = 2z as the trivial case, and the other case is when z; + 2o = 0 also, so
21 = 2o = 0, and (0,0) is the finite singular point (the other one is at (oo, 00)).
Therefore

Lemma 6.4. in definition the location of the singular point(s) is de-
termined by (i) f'(z) = 0 or oo or (ii) where any two of the analytic surfaces
for f() (called locally fi() and f2()) cross i.e. where fi1(z) = fo(2). These are
the non-trivial solutions of z1 = zo and f(z1) = f(z2) (they are trivially true
everywhere).

Lemma 6.5. A function f() has a singular point at P = (z, f(2)) if and
only if f() is either not locally left-unique there or f() is not locally right-unique
there.

Proof. 1t is only necessary to choose the neighbourhood that is the intersection
of the two neighbourhoods in definitions [6.1] and [6.2 and take the negation of
the result. O]

Lemma 6.6. Composition with a function h() that is in A and has no
singular point at a particular location implies that the singular/non-singular
status of f() is the same as that of h(f()) and f(h()) each at the corresponding

point of f().

This is obvious from the assumption that any i() € A is a smooth function
and is locally one-to-one away from singular points.
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Definition 6.7. f() has an inversion point at (z, f(z)) if and only if f(z) =
0.

It is possible for a singular point to also be an inversion point e.g. f(z) =
272 at z = 0. An example of an inversion point that is not a singular point
is f(2) = 27! at 2 = 0 because this function is everywhere right-unique and
left-unique.

The definition used in my earlier paper on algebraic functions [2] includes
inversion points with the singular points, and inversion points were not con-
sidered as a separate category. The reason for separating them out is for
consistency in definition [6.3| that now works even if f(z) = oo where a neigh-
bourhood of oo is as would be expected on the Riemann Sphere i.e. a region
of the complex plane outside of a finite connected region defined by a single
boundary.

A topological argument involving moving f(zg) to oo where 2 is a singular
or inversion point suggests that the direction of traversal of f(z) round a circuit
surrounding (z, f(z)) (P) is the same as that of the corresponding circuit z for
any point P in the graph of f() except when f(z9) = oo when it is reversed as
the result of this circuit crossing oo.

The following results relate singular behaviour to the operations of inver-
sion, composition, arithmetic operations, and union.

Lemma 6.8. (z, f(z)) is a singular point of f() if and only if (f(z),2) is a
singular point of f°71().

Proof. Lemma (6.4)) makes this obvious. O
For a very similar reason
Lemma 6.9. Combining a function in f() € A with another function in
g() € A without a singular point using x will not alter the singular/non-
singular status of f() at the corresponding point where * = 4+, —, X or +.

This result is obvious:

Lemma 6.10. the only singular points of a union that are not included in
one of the separate components is where at least two components intersect.

These are known as intersection singular points.

Lemma 6.11. If f(),h() € A and f() is right-unique with a singular
point at (21, f(z1)) then h(f()) is singular point at the corresponding point(s)

(zlah(f(zl>))'
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Proof. Consider a neighbourhood N of (z1,h(f(z1))). Then because of Theo-
rem there is a corresponding neighbourhood N’ of (z1, f(21)) under map-
ping by h°7!(). Because f() has a singular point at (21, f(21)), there exists
(29, f(22)) and (zs3, f(23)) € N’ such that zo # z3 and f(z2) = f(z3). This
is because f() is right-unique so the second option in definition is not
possible. Therefore there exists (22, h(f(22))) and (z3,h(f(23))) € N where
29 # zg and h(f(z2)) = h(f(z3)). This works for any neighbourhood N imply-
ing h(f()) has a singular point at (21, h(f(21))). O

This has a corresponding lemma obtained by inversion. Expressing every-
thing in terms of the inverse functions gives

Lemma 6.12. If fo71(),h*"1() € A and f°7() is left-unique with a singular
point at (f(z1),21) then fo=Y(h°7Y()) is singular point at the corresponding

point(s) (h(f(z1)), 21)-

Then renaming f() and h() to their inverses and making other changes of
notation simplifies the presentation:

Lemma 6.13. If f(),h() € A and f() is left-unique with a singular point at
(2, f(2)) then f(h()) is singular at the corresponding point(s) (h°~1(2), f(2)).

The importance of Lemma[6.11]is that it is not possible to remove a singular
point in a right-unique function in A e.g. z — 2% by applying another function
to the result. For example applying z — 2!/ gives the union z — +z that has
an intersection singular point where these components coincide at (0,0). The
condition that f() is right-unique is important, for example applying these
functions in the other order gives (2'/2)? = 2z without any singular points.

7 Solutions of the equations and defin-
ing singular points and types of multivalued
functions

foseltidicseiiiot note to the reader of earlier versions: the roles of and
have been reversed, and g;() and go() have been exchanged and the presen-
tation of the main theorems has been reversed to make the final presentation
look right eg ¢1() is introduced before go() et FHAHdd ki

ook this section is still under construction *¥AksHHRsK

My earlier thoughts about equations such as and is that they
were just descriptions of the asymptotic behaviour of f(z) close to the relevant
singular point, but they can be equations that are satisfied exactly by certain
multivalued analytic functions.
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In the former approach, if there are other singular points whose behaviour
is specified in their vicinity, then I expect will only asymptotically hold
close to the corresponding singular point. Such functions will not be solutions
of except asymptotically close to the appropriate singular point. It is
interesting to consider how such functions might be constructed just from their
singular behaviour at these points. A possibility is linear combination (LC)
of the minimal i.e. special solutions for each separate singular point. This
LC will have precisely the asymptotically defined behaviours at the singular
points because all the other terms will not have a singular point at each of
them. This I think can perhaps be generalised to nonlinear combinations, if
the condition of minimality is dropped. i.e. find the general solution of a set
of simultaneous asymptotically defined functions about a set of singular points
as some arbitrary function in A of basic solutions to them singly?

For a multivalued single component function f() in A it is possible to have
a circuit in which the z value is returned to but w comes back to a different
value. That gives rise to an equation of type . As the circuit is reduced
in size, at some points the final value reached will suddenly change and will
eventually will suddenly equal the original value. It suddenly changes where
the curve crosses a singular point of which there can be many. The singular
point is where the two values of f() coincide. Having found all the singular
points and their associated equations relating the function values, it should be
possible to, by following any combination of the paths in any order allowing
repetition, to get from say (z;,w;) to any other point (z;,w) in the graph of
f(). This would indicate that all the equations of type have been found.
It is possible (see for example ) that there is a pair (or perhaps more) of
singular points that are associated with the same transformation (81f) or its
inverse.

Similarly there can be circuits that return the w to the same value but z
returns to a different value. This gives rise to an equation of type and
is equivalent to doing the same thing for f°~!(). There could be a finite or a
countably or uncountably infinite number of singular points. See for example
@ with solution that has uncountably many singular points on the unit
circle. [Is this correct? For the case when the number of singular points is finite
or countably infinite, this leads to the graph of f() being described as a set of
collections of points say 21, 22 . .. 2, W1, Wy . . . w, such that every one of the 2’s
is mapped to all of the w’s in every collection. Away from singular points, all
the z’s are distinct and so are all the w’s. Therefore the positive integers p, q
are constants for the function f(), but either could be co. It may be useful to
define the signature of an function in f() to be say {(p1,¢1), (p2, g2), - . .} where
each of the pairs corresponds to one component of the function.]

The fact the functions can be multivalued and can have many components
does unfortunately introduce some complexity. Many components in a function
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might make it unclear how to count a set of functions. For example functions
are different if their sets of components are different in any way e.g. it is
possible to have a set of functions each of which has a single component.
Also another set of functions could have all possible pairs of the same set of
components with each pair in a different function, and another could have all
possible non-empty subsets of the same set of components, each in a different
function, and finally a single function that has all the components in the sets.
For solutions of equations it will usually be the case that if a set of components
satisfies the equations, any function that consists of a non-empty subset of the
components will also satisfy them which of course includes the function that
has all the components. This will be the case if the equation only involves the
function values and not anything else such as the number of such values etc.
and applies to equations and below. Much of this complexity can be
mitigated by referring to the set of single-component solutions of an equation.

An equation w = f(z) means that w is one of the values of f(z) i.e. w €
f(2) or w is the set of all values of f(z) depending on context.

In Section [5| the singular points associated with power functions are all
described by special cases of the following type of equations

f(2) = f(1(2)). (29)
f(z) = 92(f(2)) (30)

These equations can be associated in general with functions that are not either
left-unique or right-unique. For example if f() € A is not right-unique so that
it has many different values generally, then at one point z; by picking on one
pair of values, the first and the second, another function go() can be defined
by mapping from the first to the second after letting z; vary smoothly over
all of C so that, in the absence of singular points of f() where a pair of these
values become equal, if f() is continuous so is go(). Thus go() is defined by
. On circling a singular point the values may swap or change so in general
g2() will be multivalued and may not be unique. If go() is not unique (and
trivially if it is) the members of go() will form a group under composition
because the composed function will still be a function mapping value(s) of f()
to others. Likewise f() that is not left-unique will allow the function g;() to
be constructed satisfying and the set of such functions will form a group
under composition.

Later on many examples arise in which these types of equation seem to not
only characterise the singular points, but they also act as defining equations
for classes of functions f() € A. This is also connected closely with their
special solutions. Some basic results follow regarding equations and
followed by examples that motivate some general theory of special solutions.

[ Any single component multivalued function f() € A can be a solution
of because once f() is chosen, pairs of values (w, go(w)) are obtained by
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putting each possible value of z € C into (30) making sure that every pair of
values (z, f(z)) of the multivalued f(z) is included for each value of z. The
graph of go() (i.e. the set (z,w) such that w = g¢»(z)) must be a subset of
this i.e. one of its components. It is not necessary that every value of f(z)
is mapped to every other one by ¢a(). If f(z) = {w1,wq, w3} it could be that
g2() maps w; to wsy, and ws to ws and w3 to wy. For example ((16)) with p = 3.

]

Theorem 7.1. Any single component function f() € A satisfies and
the associated single-component functions g1() form a group under composition.

Inverting this gives fo=1(2) = ¢¢7'(f°(z)) where g7~!() is uniquely de-
termined therefore by renaming f°~!() as f() and renaming ¢ ' as g»()

Theorem 7.2. Any single component function f() € A satisfies and
the associated single-component functions ga() form a group under composition.

Lemma 7.3. If f() € A satisfies (30) with g2(), then f() has singular points
at every point (z,w) that is a solution of w = gs(w) where w = f(z).

Proof. 1f Lemma is applied to solutions of let w; = f(z), two branches
of f() are related by w; = go(ws) (amongst other possible relationships) and
so their equality which is the meaning of Lemma gives the equations w =
g2(w) with w = f(z) that define the locations of some of the singular points
in solutions for f() of i.e. those common to all solutions f(). O

Next follows a few lemmas that are almost obvious which follow from prop-
erties of relations in general. They are needed to complete the main theorems
of this section.

By Theorem , analytic functions are always total (left and right) except
for the constant function, Lemmas and can be expressed in terms
of functions as follows

These results are not related to or [

Lemma 7.4. If fo(f1()) is left-unique then fi() is left-unique or fo() is
constant.

Lemma 7.5. If fo(f1()) is left-unique then fo() is left-unique or fi() is not
right-unique.

Renaming f1() and f() to their inverses and using the facts that inversion
swaps left- and right- uniqueness and left- and right- totality, and the inverse
of a constant function does not exist, gives two obvious results that can be
combined as follows

Lemma 7.6. If fi(f2()) is right-unique then (1) fi() is right-unique and (ii)
either fo() is right-unique or fi() is not left-unique.
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]

Lemma 7.7. If f() € A satisfies with g1(), then f() has singular points
at every point (z,w) that is a solution of z = g1(z) where w = f(z).

Proof. Invert to get fo"'(w) = g (f°"(w)) and apply Lemmal7.3and
rename f°~1() as f() and g2 () as g2(). O

Applying h() to both sides of shows that if f() is a solution of
so is h(f()) for any h() € A. Starting with zo = g1(21), applying f() to both

sides and using gives f(z2) = f(g1(z1)) = f(z1) i.e. from equation (29)) it
follows that

2o = gi1(21) = [(21) = f(22). (31)
From (31)) it follows that, starting with zo = g1(z1), gives
f(g1(z1)) = f(2z2) = f(21) (32)

SO with z = z; holds which is independent of z and which will be true
for one value of zy therefore holds that does not depend on the value of
29; this is the converse showing that is equivalent to . With different
symbols this is the same as

23 = g1(22) = f(2z2) = f(23) (33)

and substituting into gives z3 = g1(g1(21)) = f(z1) = f(z3). This
can be repeated any number of times giving zo = ¢{"(z1) = f(21) = f(22) for
any n € N. Because this is symmetric, exchanging z; and 29 and combining the
results, this can be written as (21 = ¢{"(22)) V (22 = ¢{"(21)) = f(z1) = f(22)
and

dn € N[(z1 = ¢7"(22)) V (22 = g7"(21))] = [(21) = f(22). (34)

Suppose that the special solutions of are defined to satisfy in addition the
converse of this, it can be written as

fa(21) = fal(z2) & In € N[(z1 = ¢7"(22)) V (22 = g7"(21))] (35)

which can be abbreviated to z; ~ 25 which is an equivalence relation.

This states that the distinct values of f4;() are in one to one correspondence
with the equivalence classes of ~. Any solution f(z) of is a function of
the equivalence classes i.e. its value is the same for each member of the same
equivalence class, therefore it can be written as a function of an arbitrary such
function fy() i.e. f(2) = h(fs1(z)) where h() is also right-unique by Lemmal7.6|
if fs1() is. Also by Lemma the singular points of f() will include all points
corresponding to the singular points of f5;() and of h(). Therefore the functions
fs1() are solutions of with the minimum number of singular points. Here
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clearly fs1() can be chosen to be single-valued i.e. right-unique. Intuitively, if
z1 # g1(21), so in the above notation, g*(z;) will all be different for all k € Z
so if z describes a small circle around z;, the equivalence classes corresponding
to each of these points have z’s that also do this and so the equivalence classes
are a single valued function of z that is close to z;. Therefore there is no
singular point in fg(z) where z # ¢1(z). A formal proof seems difficult. This
is the meaning of the paragraph containing .

By its definition, fg () is not actually a unique function. Any other function
f2() could be used in its place where f¥(z) = h(fs(z)) where h() is any left-
and right-unique function which must be a bilinear function.

For any more complex cases such as when f() has sets of values, these sets
will then be in one to one correspondence with the equivalence classes of ~
and this can be represented like this with a multivalued function h(). This
shows that

Theorem 7.8. A function f() € A satisfies with g1() € A\I i.e. g1()
in not the identity function I, if and only if f(z) = h(fs1(2)) for some function
h() € A where fq() is a right-unique solution of with ¢1(), such that in
addition, fs() has the minimum number of singular points i.e. singular points
(z, f(2)) only where z satisfies z = g1(z). If f() is right-unique so is h().

An example is f(z) = f(2z). This leads to the equivalence relation
dn € N[z1/20 = 2" or 27" & In € Z[Ing 21 — Ing 20 = n (36)

50 $(Ing(21) —Ina(22)) = 0 and real part can be expressed in terms of the floor
of these values i.e. these values rounded down to integers i.e. Ing(21)—Iny(zy) =
|RIng(z1)] — [RIng(z2)] so the general solution of f(z) = f(22) is h(fa(2))
where fg(z) = Ing(z) — |Rlng(z)] and A() is arbitrary in A. Here | and |
bracket an argument of the “floor” function that rounds down to the closest
integer.

If f(z) = 2% then f(z) = f(2* ") for all n € N which converges to all
the values on the unit circle which is common to all the equivalence classes.
Therefore a smooth solution must be constant.

Definition 7.9. With reference to Theorem define S[] as the mapping
from g1() to fs1(). It maps a group X of single-component functions g;() in A
(typically containing just the identity and a function and its inverse and can
be defined by giving its generators) to a set' Y of members of A. The set Y
also forms a group under composition and is such that every member f() of
Y is a left-unique and right-unique function of every other member f*() of Y
ie. f(z) = iig}c((j)) for some a,b € C. Therefore the set Y is represented by
any single member of it and this fact motivates the notation S[g:1()] = fs()
as though the result of S[| has a single member. The square brackets are the
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notation for an operator i.e. a function with another function as an argument,
and S can be thought of as an abbreviation for “simplest” or “special”.

The operator S is the mapping from a generator of the group X (if there
is only one) e.g. g¢() to any member of S[g()]. From by substituting
2z = ¢° Y w) or w = g(z) it can be written as f(g° ' (w)) = f(w) which is an
equation of the same form, and because is the same when g() is replaced
by its inverse, it follows that

SlgO] = Slg" 0] (37)
)

Also by substituting ¢°*(z) for z in gives fo(g%%(2)) = foa(g°*tV(2)
for any £ € N. Then S[g()] = () 1mphes 1(z) = 1(g9(2) = U(g°%(2))... =
[(g"(2)) ¥n € N. Also [() only has singular points where z = g(z) i.e. [()
has singular point at (z,1(z)) implies z = g(z). From this it follows that ()
has singular point at (z,{(z)) implies z = ¢°*(z) which is the same as [() only
has singular points at points (z,[(z)) such that z = ¢°"(z) so I() has both
properties of a member of S[g°"()]. Therefore S[g()] C S[g°"()]. Then from
the structure of the result of S i.e. the Y above and , it follows that
Slg()] = S[g°"()] for all n € Z except n = 0 i.e. the following result is proved

Q

A/-\
~—

Theorem 7.10.

vn € Z\{0} {S[g()] = S[g”" O]} (38)
From it follows that

21~ 2 6 3In € N[(z1 = g7 (22)) V (22 = 97" (21))] =

Tn € N|(z1 = g () V (22 = g (2))] & 21 ~ 2 (39)

where ~ has been introduced in a manner analogous to ~ for the modified
version of where g9%() takes the place of g;(). This can be summarised as
Z1 ~y 2o = 21 ~ 2o thus the equivalence classes of ~j, are nested within those
of ~. So any solution of fu1(2) = fu1(g9%(2)) for fui() is a function of the
equivalence classes of ~j so fs1(2) = h(fsr1(2)) for some right-unique function
h().

From (29), f()°"~Y can be applied giving fo"(z) = f"(gi(2)) so if f()
satisfies so does f°*() with the same ¢;() and any n € N. This also
follows from Theorem ([7.8)).

The extension to multiple simultaneous equations of type will depend
on the analogous existence of simultaneous equivalence classes.

7.1 solutions of (30))

From here up to Theorem [7.13| may be unnecessary!
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Lemma is quite confusing because the concept of “solution” is being
used in different contexts and the same equation is being used in two
different ways, one to determine the set of functions f() satisfying this for
a given ¢o(), and the other to determine the set of singular points that are
common to all members of this set. If P = (21, w;) is not such a point, even
if it satisfies w = f(z) and f() as a function satisfies (30), then it is not
necessarily true that P as a point satisfies and because wy # go(w;) there
is no reason for P to be a singular point unless f’(z;) = 0 or co. An example
of the latter is a singular point at z = 21 if f*(2) = f(z1 + (2 — 21)?) which
also satisfies showing that (z1, f*(21)) = (21, f(21)) is a singular point of
f*(). Here f*() is taking the place of f(). In let z = h(t) for any h() € A
and define the function f*(t) = f(h(t)). Then f*(t) = go(f*(¢)) i.e.

Lemma 7.11. If f(z) satisfies (30) with g2() then so does f(h(z)) for any
h() € A.

This is a very general solution of with the same f() and go() because
the function h() € A is general. However the general form of the solution of
(30) with fixed go() € A is not necessarily f(z) = fs(h(z)) where h() € A for
any single fixed function fs() to be determined because it is conceivable that
there could be more than one such function fs() and in fact Lemma only
shows that the set of solutions of for fixed go() is in general of the form

Us U e ;- (40)

fes h()eA

where S is a set of functions in A such that for any pair of functions f;() and
f2() in S it is not the case that either

fi(z) = fa(h(2)) or fa(2) = fi(h(2)) (41)
for any h() € A. The point of the last condition is to eliminate duplication
that would otherwise occur in the set defined by .

If the search is for the subset of left-unique solutions f() of (30)), this is
likely not the most general solution for fixed go() because, by Lemma m, if
f() is left-unique and has a singular point then f*(z) = f(h(z)) will have a
singular point at the corresponding location regardless of h(). Moreover, fi()
and f5() are left-unique in and f9'(f2(2)) = z so the first part of
implies h(z) = f57'(f1(2)), so the set S (now called S*) is a set of functions
such that no pair of them fi() and fa() is such that h(z) = f9'(fi(2)) for
any h() € A. This is clearly impossible if S* has more than one element
because f9*(fi(z)) € A. Therefore the general solution of for left-unique
functions f() takes the form

U £ n0). (42)
(€A



30 John Nixon

for some particular function f*() € A that must also be left-unique because f()
is by Lemma assuming h() is right-unique. The function f*() however is
not unique because can be written in many different ways using different
functions f*(), but in each equivalent way of writing the set of solutions there
is only one function f*(). Therefore the general form is f(z) = fs(h(z)) where
fs() is any of the special solutions of that have the minimum number of
singular points i.e. singular points only where w = go(w) and w = f(z) as
required by Lemma|6.4]i.e. the function f*() above can be identified with f;().
These arguments show that
This is very like Theorem |7.13]

Theorem 7.12. A function f() € A is left-unique and satisfies (30| with
g2() € Aif and only if f(z) = fs2(h(2)) for some right-unique function h() € A
where fs() is a left-unique solution of with go() that has the minimum
number of singular points i.e. singular points (z,w) only where w = f(z)
satisfies w = ga(w).

Requiring f() in Theorem to be left-unique eliminates for example
f(2) = 2% or (In(2))? so (In(h(z)))? is eliminated as a general solution of
by the left-uniqueness condition on f(). The general solution f(z) = h(z)?
for arbitrary h() is vacuous because it is equivalent to f(2)'/? = 4h(z) which
is the set of functions each of which is the union of a member of A and its
negative and this must be true whatever f() is and includes any function
f() € A. Generally, the set of functions f(z) = k(h(z)) where k() is right-
unique and h() is arbitrary implies k°~*(f(z)) = k°~1(k(h(z))) which is a union
that includes h() itself and is arbitrary i.e. vacuous because if h() is chosen as
ke f(2)) then k(h(2)) = k(k71(f(2))) = f(2).

For f(z) = (In(h(2)))? for arbitrary h(), f(2)"/? = £In(h(2)) so f(2)"/? =
f(2)Y2 4 27i which is not vacuous and means that for any value of f(z)'/2,
2mi can be added or subtracted from it, and the sign can be changed to give
another value of it. It can be written as f(2) = (f(2)"2 + 27i)? which is also
an equation of the type with general solution f(z) = (In(h(z)))? which
should be part of a more general result than Theorem [7.12]

If f() does not have to be left-unique, how can duplication be avoided in
the general solution?

[ This set obviously has a vast amount of repetition as defined by .
Any f*() € A that is also of the form f(h()) for some other f() € A should be
excluded from the outer union in (0. Also because f,(h()) are all solutions,
the outer union must include the special solutions fy(). Then the question is
are there any other solutions? Let f*() satisfy but not be one of f,(h()).
Then by Lemma f*() as well f,() has singular points at every point (z,w)
that is a solution of w = go(w) where w = f(z). Each subset of solutions
for fixed f(). Take any solution f() and identify singular points that are not
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required by Lemma |6.4] and use this to construct h() or an equation it satisfies
so we know it exists. see the dual result half way down page 33. |
[ Equation can be written as

21 =2 = f(21) = 92(f(22)). (43)
It is hypothesised that the special solutions also satisfy
21 =2 < f(21) = g2(f(22)). (44)

how could this ever be true?
i.e. they satisfy

1 =2 f(21) = g2(f(22)). (45)

i.e. the equivalence relation defined by 21 ~ 2o < f(z1) = g2(f(22)) is just
equality. Can we show that the s.p. of f() satisfying this are included in those
for any solution of (30)? About the simplest example possible is f(z) = —f(z)
having the equivalence relation z; ~ 2z < f(21) = £f(22) (4 sign for n
even and — sign for n odd). This is equivalent to f?(z;1) = f?(22) so the
equivalence relation is equality if f2() is left-unique. For example f?(z) = In(z)
so f(z) = In(2)"2. The general solution is h(z)"/? and the special solutions

are f(z) = (gj:—gi)l/ ? where h() left-unique and right-unique. If f() is not left-
unique it must satisfy which has singular points determined in a manner

similar to solutions of .

Theorem 7.13. A function f() € A satisfies with go() € A if and
only if f(z) = fe2(h(2)) for some function h() € A where fs() is a left-unique
solution of with go(), such that in addition, fs() has the minimum number
of singular points i.e. singular points (z,w = f(z)) only where w satisfies
w = go(w). If f() is left-unique so is h().

Proof. Invert to obtain fo~(2) = f°"1(¢g5'(2)). This is with f()
renamed as f°~!(), and g;() renamed as f°~'(). Apply these name changes to
Theorem [.§ O

Theorems ([7.8]) and ((7.13) can be combined as follows because the gen-
eral form which specialises h(fs1(z)) and fso(h(2)), both by choosing k() is

fs2(h(fs1(2)))-

Theorem 7.14. A function f() € A satisfies with g1() € A, and
with g2() € A if and only if f(2) = fe(h(fa(2))) for some function h() € A
where fs1() is a right-unique solution of with g1(), such that fq() has
the minimum number of singular points i.e. singular points (z,w = f(z)) only
where z satisfies z = g1(z) and fs() is a left-unique solution of with go()
such that fsx() has the minimum number of singular points i.e. singular points
(z,w = f(2)) only where w satisfies w = go(w).
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This makes most sense if h() is left-unique and right-unique i.e. a bilinear
function. This is the simplest solution. In this case, fs(h()) and A(fs()) can
be written as fs() and fs1() respectively because of the arbitrariness in fg;()
and fsQ() so that f( ) fs2<fsl<))

With reference to Theorems and (7.13), (30) is satisfied by f(z) =
h(fs1(z)) so fs(h(2)) = go(fs(h(z )) for arbitrary h() which can be called w

therefore

[s2(w) = g2(fs2(w)). (46)
Also ([29) is satisfied by f(z) = h(fs(z)) so h(fa(2) = h(fs1(g1(2))) for arbi-
trary h() therefore

fs1(2) = fs(g1(2))- (47)

The operators S; and Sy will be introduced here such that f() = S1[g1()] and
fs2() = Sa[g2()]. Now it can be checked whether

f(z) = fa(h(fa(z)) (48)

satisfies f(z) = g2(f(91(2))). Substituting this in gives fszh(fsl( ))) = g2(fs2(h(fs1(91(2))))

which simplifies to fs(h(fs1(g1(2))) by (46) and to fs2(h(fs1(2))) by . 47)) which
is an identity, so it follows that fsg( ( fsl( )) is indeed a very general (if not

the most general) solution of f(z) = g2(f(g1(2)))-

Likewise in reverse, starting with feo(h( fsl( ) using ) then (| 1t is
equal to go(fs2(h(fs1(g1(2)))) and finally using (49) it becomes f(2) thus
follows. This proves that and are equivalent provided the functions
fs1() and fy() are defined in terms of gi() and g() as in (4€]) and ([47).

Inverting gives fo,"(2) = fiy (g5 (=) Abo fia() = Salgo()] =
(Silgs~ ()" From (47) by substituting 977 (#) for 2 gives fa(977() = fa()
iLe. Silk()] = Si[k°71()] for any k() € A. Therefore Ss[g2()] = (Si[g2()])°*
which is the relationship between S;[| and S3[]. Elsewhere S;[] will simply be
referred to as S||.

Theorem 7.15. The general solution of for f() is f(2) = fea(h(fs1(2)))
i.e. f(z) = (S[ga])> " (h(S]g1](2))) where the conditions on fu() and fu() and
h() in Theorems and apply and the operator S[] is defined such that
S[g1()] is the solution k() of k(z) = k(g1(2)) unique up to a bilinear function
having singular points only where z = g, (2).

How can f41(), fs2() be obtained practically from g¢;() and go() respectively.
What properties do these relationships S;[] and Sy[] have? Do f(),91() and g2()
have to be single-component functions?

Suppose in addition to f() € A satisfying with go() it satisfies
with g1() then f() satisfies

f(2) = g2(f(91(2)))- (49)
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It is a strange thing that in lemmas and , the defining conditions for
the sets of common singular points of functions f() € A satisfying and
look like rewritten versions of the same equations. These equations have
to be interpreted as equations for single-valued quantities to get these results.

Because of lemma , every solution of has singular points at points z
where z = gi(z) the type of which is determined as in Section [J] or extensions
of it. Thus it is unnecessary to think about the types of the singular points of
h(fa(2))-

For example (fy1(2))~% which also has a singular point where fy(z) = 0.
The uniqueness of the set of equivalence classes on which f; () is based suggests
that of all the solutions of in A, the special solutions f,;() that also satisfy
have singular points only where z = g;(2) because if there was another
singular point in a special solution of where z # g;1(z) then all functions
of the form f(z) = h(fs1(z)) would by Lemma [6.6] also have a singular point
there contradicting the above.

All the types of singular point so far found are of the types ¢ : p representing
the winding number ratio where p and ¢ are positive integers have no common
factors. These are all the types of singular points for algebraic functions. In
the cases where p and ¢ are finite, a singular point (zo,wp) is a point about
which if a path is traced from the starting point back to itself ¢ times in the
z plane this corresponds to a path in the w plane described p times back to
itself.

The most general form of equations such as , , , and

that describe the behaviour in the neighbourhood of a singular point seems to
be

f(2) = ga(z, f(9:(2))) (50)

in which g, has direct z dependence in addition to its dependence on f(). The
conditions for singular points required by are

z=g1(2)
f=g(2f) (51)

The meaning of where ¢;() is the identity function is that there is an
associated singular point (zp,wy) which is the point about which if a path in
the z plane is followed to its starting point and if the function value is followed
continuously, the values of the function at each end of the path are related by
. This is the case where ¢ = 1. As will be shown, the singular point is also
a point where the number of function values changes and wy is given by the
different values of the function wg = f(z¢) being equal. This can be used to
determine (2o, wp).

There is another version of this to describe the situation where p = 1. In
this case go() is the identity function and the roles of z and w = f(z) are
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reversed. There is then a point (zg,wp) about which if a continuous path is
traced in the w plane back to itself then the corresponding values of z are
related by . The equality of these values determines the value z.

In addition to these cases, for non-algebraic functions it is possible to have
q = oo. In this case the value of w is never returned to its original value.
Probably the simplest example is w = f(z) = In(z) the inverse of the complex
exponential function. This is equivalent to z = exp(w) = exp(w). exp(27i) =
exp(w + 27i). Therefore w + 27 = In(z) and equation is satisfied for
fO) =1In() and g1(z) = 2+ 27mi and g¢2(z, f) = f. Therefore the singular points
are given by z = z + 27 from lemma which implies z = co. This resolves
the paradoxical situation with Theorem and Lemma and the fact that
the exponential function has no finite singular points (they are at z = oo with
w = 0 and oo). As in the examples above go() and g;() are right-unique and
the singular point of f() is at z = 0.

Analysis of behaviour in the neighbourhood of singular points similar to the
above can be found for functions of a complex variable that are not algebraic
as the following examples show.

Returning to f(z) = In(z), it satisfies f(z) = f(z) + 2mi. Conversly f(z) =
f(2) + 2mi implies, taking the exp of both sides, the identity exp(f(z)) =
exp(f(z) + 2mi) = h(z) say, for some function h(z) in A which is completely
arbitrary because this imposes no condition on h(), therefore in general f(z) =
In(h(2)). The singular point(s) of f() are only where h(z) = 0 or co and at
points z that are singular points of A(). At minimum there are singular points
of f() only where h(z) = 0 or co when h(z) = a+bz so that h() has no singular
points. This implies zg = —a/b or oo and the only fixed singular point is at
2o = oo with the other one having an arbitrary location, and the singular point
by has wy given by the solution of the single-value equation wy = wq + 272
which is wy = oo. Therefore the singular points of In() are at (0,00) and
(00, 00) and those of its inverse exp() are at (0o, 0) and (oo, 00).

Consider w = (In(z))?. Can a similar analysis for this be done? We have
w = (In(z) + 27i)? then (50) is satisfied with go(2, f) = (f'/? 4 2mi)? and
g1(s) = s. Note that go() is now not right-unique. Another analysis of this
sort comes from (In(z))* = (—1In(z))? = (In(27'))? i.e. Equation (50)) with
ga(z, f) = f and g¢1(z) = 271, which shows that if in equation either of
g2() or g1() is not right-unique, this analysis may not be unique.

Consider f(z) = zIn(z), then

f(z) = f(z) + 2miz. (52)

This can be represented in terms similar to (50 with single valued go() and
g1() but this time g» has direct z dependence in addition to its dependence on
f() and gao(z, f) = 2miz + f and ¢1(z) = z. Conversely from , dividing by
z and taking the exponential gives the tautology exp(f(z)/z) = exp(f(2)/2),
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therefore this function can be any function in A say h(z). Therefore f(z)/z =
In(h(z)) and f(z) = zIn(h(z)). The singular points of f() are at any point
where h(z) = 0 or oo or at any point that is a singular point of A(). This gives
at minimum, where h(z) = a+ bz with b # 0, singular points at z = —a/b and
z = o0o. If it doesn’t have this property how can it be transformed to a function
that does have it, being one example? Typically, if is satisfied for
two separate functions ¢;() or a multivalued g;() then f() is expected to be
constant because applying ¢1() and go() and their inverses repeatedly to a z
value will likely reach any value eg f(z) = f(2'/2). What are the conditions
for an exception to this.

Consider the binary operation which is the special common solution f() of
f(z) = hi(f1(2)) and f(z) = ha(f2(2)) for fixed fi() and f3(), but arbitrary
hl() and hg()

In order to generate g;() and go() from f() according to and this
assumes that ¢;() and go() are not dependent on z. In the general case this is
not so as shows. Generalising to f(2) = f(z)+k(z) for some k() € A.
To solve this substitute f(z) = f*(z)k(z). Then it cancels down to f*(z) =
[*(z)+1so 2mif*(z) = 2mif*(z)+2mi and exp(2mif*(z)) can be anything, call
it h() € A, then f*(z) = % and finally f(z) = k(z)222) provided k(z)

2 27
is not the zero function k(z) = 0. From this the solution of f(z) = ki(2)f(2)

can be obtained as f(z) = kl(z)ln(;r(f)) by a In() transformation.

If f(2) = ki(2)f(2) + ko(2) again make the substitution f(z) = f*(2)ka(2)
then it simplifies to f*(z) = k1(2) f*(2)+1 and so exp(2mi f*(2)) = exp(2mik1(2) f*(2))
it may not be useful to go further.

Inversion may be useful too for example and its solution can be written
as
fo71(2) = solution for w of z = f(w) + 2miw. This has solution for f() given
by
f°71(z) = solution for w of win(h(w)) = 2. This can be written as follows
where [() = f°7Y(): 1(z) = solution for w of z = [°"}(w) + 2miw has solution
[(z) = solution for w of wln(h(w)) = z. Better notation needed!

Consider I(f(z)) = l(k(z)f(z)) as a special case of (50).

What happens if is inverted?

It seems paradoxical to say that zIn(h(z)) is the general solution of
because just states that whatever the multivalued function f(z) is, if
it has any value w at some point z, then at that point it also has the values
w+2minz for alln € Z. In fact zIn(h(z)) can be any function f() in A provided
h(z) = exp(@) and holds in the multivalued sense. Nevertheless the use
of the term “general solution” in this and other cases does seem convenient.

Suppose f(z) = (In(z2))k. Introduce the auxiliary function g;(z) = 2?
then f(g1(2)) = (In(2P))* = pkf(2) so holds with go(z, f) = fp~*, and
Lemma characterises g;(). Alternatively, if only f(g:1(z)) = p*f(2) and
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g1(2) = g1(e*™/P2) then this is a set of defining equations for f() involving two
instances of and linear functions only, one to characterise g;() and the
other to define f().

8 Compositional powers of a function

This means expressions of the form f()°" where n can be a positive or negative
integer that have been introduced earlier in the context of relations in general.
There is a natural extension of this to other exponents such as any rational
number or any value in C. One neat way to do this is from a nice trick I found
online [5] and is as follows. Introduce the function f*(¢) = f°(zy) where zq is
an arbitrary value. Then f*() satisfies the following

Fr+1) = fU(z0) = F(f"(20)) = F(F*(1) (53)

then in terms of f*() a compositional power of f() can be expressed as follows

FrfE) = fr(f(20)) = o (z0) = f*(n + ) fee,
f(w) = fH(n+ D (). (54)

Also (B3) is f*(t) = fo'(f*(t + 1)) has a formal solution as above given
by f*(t) = So[f(h(S [z — 2z + 1](¢))) from Theorem so fo"(w) =
Solf(h(S1[z = =z + 1]( + [SalfT (S [z = 2+ 1) ().

Example: f(f(z)) = 22 The solution should be f(z) = 22" but because
21/2 is irrational, f(z) has an infinite number of values!

9 The relationship between g¢;() and the type
of singular points of f() satisfying (29)

Consider the role played by ¢;() and its derivatives at an intersection point
z1 which is a solution of g;(z) = z. This as will be seen controls to leading
order the behaviour of f(z) in the neighbourhood of the singular point at z;
provided f(z) satisfies (29) where g;() is as in (29)). First consider an arbitrary
value of g(z1). For 2 = 21, g1(2) & g1(21) + (2 — 21)g1(21) = 21+ (2 — 21) g1 (21)
therefore f(z) ~ f(z1 + (2 — 21)g5(2)). Put z = z; + 0 and treating this
as an equality then f(z; +9) = f(z1 + d¢i(z1)). A change of variable can
now be made so as to relate this equation to f(z) = f(z) + 2mi with its known
solution. Let w = In(d) = In(z—2z;) and the new function f*() by f*( )= f(2)
then f*(w) = f*(w +Ingj(z1)). Now let w = at and f7(t) = f*(w) = f(2)
then f*(t) = f* (t + mglﬁ#) Then choose a so that In(g;(z1)/a = 27i i.e.
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a =BG hen f() = hexp(t)) Le.

f@%:f@»:Mwam»=h(@—zm¢ﬁm>. (55)

This is the asymptotic behaviour of f() for z close to z; where h() is an
arbitrary function in A. This works provided ¢/ (z;1) # 0.

Now suppose ¢;(z1) = 0 but ¢7(21) # 0. Then ¢1(2) =~ g1(z1)+ g1 (z1)
then f() satisfies f(z) = f <z1 4 =)l 21) =g (zl)> Now put k(9) = f(21 + 6)
where as before 6 = z — z; then k:(é) = k(6%¢}(z1)/2). Introduce k*() by
k(0) = k*(In(6)) then k*(In(9)) = k*(2Ind+1n(gf(21)) —1In(2)). Introduce w by
w = Ind then k*(w) ~ k*(2w) because as 6 — 0, |w| — oo so the other terms
can be asymptotically ignored. Now introduce k% () by k™ (In(z)) = k*(z) then
Ef(lnw) = kT (Inw+1n2) so k*(u) = k*(u+1n2) where u = Inw. Now let ¢()
be defined by t(uf) = k™ (u) then t(uf) = t(uf + f1n(2)). Choosing § to be
p = % then t(z) = t(z+2mi) from which ¢(z) = h(exp(z)). Undoing all these
transformations now shows that ¢(x) = t(uf) = k™ (u) = k™ (In(w)) = k*(w) =
k(0) = f(z21+0) = f(2) and h(exp(z)) = h(exp(fu)) = h(exp(FIn(w))) =
h(w?) = h([In(z — 21)]?) so finally

(z— Zl)

£(z) = h ([in(z = 22)] %) (56)

where this result will only be asyptotically correct as z — z;. Note that g{(z)
is not involved.
From gi(z1) = 1 is obv1ously also a special case needing separate

(2= Zl) E2U g4 (21) and the equation to be solved is

treatment. Then gl( )~ oz +
f(z) = f (z—i— Gzl g ) Puttlng z = 2 + ¢ and introducing f*(§) =

f(z1 +9) gives

re) =1 (5+ o). (57)

Introduce the new variable k by k ((5—1— 52293’(21)> — k(0) = A so that the

1terat10n of (57) is transformed to an arithmetic progression, then for small ¢,
5 (= )k:’(&) A which can be integrated and inverted to give § = 25

kg (z1)"
_ o[ — 2 . . .
Then f* <kg%§1)> =f (kg’l’z(i) + kgz,?(m) Introducing f*(k) = f*(§) this can
—2A
be written in terms of f*() as fT(k) = f+ 72;1 <Zl)m2 ) which simplifies
(kg’l’(zn*k?g'{(q))

to fHR) = (5

: A) ~ ft(k+ A). Let g() be given by g(I) = f*(k) where
k =1/« then g(l) =

g(l + aA) and choosing aA = 27 then g(1) = h(exp(())
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where h() is arbitrary and this implies

10 =n (e (~ree=)) (58)

asymptotically as z — 2.
This result can be generahsed as follows. Suppose ¢}(z1) = 1 and

(n

9" (1) =
Of01r2<n§m—18undg1 ( 1) # 0 for m > 2. Then ¢1(2) = 2

flgi(z

+
(2= Zl) ™ (21)+0(2—2)™*. In terms of £*() and & as above, f(z) = )
becomes f*(§) = f* (5 + —Zl + O(5m+1)). This can be iterated and if

m g ()
k is chosen such that k (5 + 691—(21)) = k(0) + A which can be approxi-

m g
mated by k’(5)691T21 A which integrates to k(J) = (mfl)z;'LA—T;§m)(zl)7 then

the iteration is an arithmetic progression and f*(0) = f*(k) = fH(k + A).
Therefore similarly to the above,

—2mim/!
f(z)=nh (exp <<m e o) = Zl)m_1>> (59)

asymptotically as z — 2.

10 Some interesting examples

This one doesn’t seem to make much sense! Another example is

f(2) = (f(2))"* (60)

with a singular point where f(z) = 0, which is a special case of in which
g2() is not single valued. Taking natural logarithms twice gives

Inln(f(2)) =In(1/2) + Inln(f(2)) (61)

and so ,
271

gy () = —2mi + 2T In(f(2)) (62)

In(2)

SO

exp (h%) In In( f@))) (63)

is arbitrary so call it h(z) then
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The function f() can only have a singular or inversion point where h() has
singular or inversion point(s) or where h(z) = 0 or co so f(z) = 0 or oo. This
log-like singularity from (60|) is characterised by the equations

92(2) = —92(2)
1) = @) (65)

for the multivalued functions f() and go(), where go() is the special solution.
If £() is also the special solution then

In(2
£(2) = exp (exp (lﬂilln(a-+bz{>> (66)
211
where a and b are constants.
Next consider

fz) = f(z%)/2. (67)

This is a special case of in which the condition for a singular point is more
complicated than for for which the condition for a singular point would
give

z=gi(2) = 2* (68)

determining more than one such point i.e. z = 0,1. The effect of the extra
factor of 2 complicates this a bit but this is still clearly true. Because ¢;()
is not left-unique, relates new singular points to other points already
known to be singular points. In this example the singular points are dense
on the unit circle because these are points for which z(2*) = 1 for arbitrarily
large k. It follows that f(z) = f(22)/2 = f(z4)/4 = ... f(z®))/2F so if
z = re? f(re?) = f((re?)?)/2% for all k > 0. For fixed r and 6 suppose
0 + 27p ~ 250 where p,k € N then f(r@)e?) ~ 2% f(rei). Putting R = r*")
In(R)

gives f(Re?) ~ () f(re?). The log dependence on R behaviour at large R

and the positions (z) of the singular points may suggest the following formula

21
f(z) = / dflog, |z — ™. (69)
0
for a solution of . Its proof is as follows

f(z%) = fo% dflog, |22 — e¥| = fo% dflog, (|z + €*/?||z — ew/Q])
= 027r dflog, |z + /%] + fo% dflog, |z — €/

=2 [/ dflog, |z + €|+ 2 [ dflog, |z — €|

— 2 [T dflog, |z + O] 47

=2 [T dflog, |z — "] +7

=2 ;" dflog, |z — | = 2f(2)

(70)
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This example has really peculiar properties because f(z) is oo on the unit
circle and this appears to isolate the function into two regions that can behave
somewhat independently because is satisfied for f() replaced by af()
where a € C and clearly any two different values of a can be chosen inside
and outside the unit circle and the solutions can be described as having a
natural boundary on the unit circle. [This doesn’t work for finite prescribed
values because if finite values are prescribed on any closed contour the Cauchy
integral formula determines a function that is everywhere analytic and finite,
uniquely inside it, but does it work for the outside region?] This is an example
that divides C into two domains of holomorphy [4] that overlap only on the
unit circle.

Next follows an intriguing example where the condition for a singular point
(an equation of the type (29))) determines two of them and the solutions found
satisfy an additional equation of the type . Suppose g1(z) = 2. Then

c+z
g1(z) = z is a quadratic equation with solutions say z; and z; such that
21+ 29 = b—cand 2120 = —a and ¢;(2) can be written as ¢;(z) = %

However in this case, ¢1() is left-unique and single valued so only two singular
points arise as a result of which becomes in this case

o=t (o), (1)

b—2z1— 29+ 2

Therefore by lemma solutions of have singular points at z; and 2s.
Using methods similar to those used in deriving it possible to formally
derive

27mi(1 — 9 :
f(z) = hy ch exp mi(In(z — zx) + 2ny70)
In (Zl—_b> + 2nmi

ne” 20—b

(72)

for k = 1,2 where hi() and hs() are arbitrary functions. By trial and error,
the following are possible solutions of :

fz) = <an — Zl>s (73)

Z — 29

where s = (Zlfbﬂi - and n € Z. It is easy to show that

In P ) +2nmi

gl(z) — 21 (21 — b)(zl — z)
g(2) =22 (2—D)(2—2) (74)

Faten = (i =2) (22 (7

Therefore
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b

exp(sTn(t)) = exp (%) — exp ((%) « zm) _ E,E7 ;)

. Increasing

S
The extra factor is (l’:—zi) can be written (including all its possible values) as

where ny,n € Z for some specific value of In(t) and where ¢ = =2

ny by 1 adds % to the argument of exp() multipling the whole expres-

sion by exp <1n(t)+%> and E,, = 1. From these it follows that £, , =
exp <m—;$z> Therefore
flon() = <Q>()exp drnom) ) )
T 22 In (b Zl) + 2nmi
From ([29)) .
f(z) = exp (m x In (c,éii)) ) (78)

Taking this continuously round a small circuit C; anticlockwise round z; given
by z = 2 +ee' for 0 < 6 < 21 where € is a very small positive real number gives

i cnew - . T
1 = o i (32)) = o5 () #1002 )

The difference over the path C) of the argument of exp() is ln?g:% so the

factor associated with doing C} is exp (ﬁ) ie. f(z) satisfies f(z) =

f(2) exp(ﬁfmi). This can be applied to write as verifying the
assumed form of f() though this is probably not its most general form. Doing

the same thing for a small circuit Cs anticlockwise round 2, gives the equivalent
71_2
result f(z) = f(z) exp(m).

11 Special solutions of the equations defining
singular points

ookl This section seems as if there are some very important results to be
found but it needs quite a lot of work yet *#Hkskk

*’s indicate likely theorems that have not yet been proved.

Let the binary relation > on functions in 4 be defined by
(O = g() & there exists an function h() in A such that f() = h(g()). Then the
relation > that points towards the simpler function is reflexive and transitive.
Also

Theorem 11.1. If f() > g() and g() = f() then f(z) = Zisz oy Jfor some
finite constants a, b, c,d € C.
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Proof. Suppose f() > ¢() and g() > f() then f() = h1(g()) and g() = hz(f())
for some functions hi() and hg() in A, and therefore f() = hy(h2(f())) i.

hy(hs2()) = I() which has no singular point. By Theorem 82| h1() can have no
a+bg(z) n

singular point and is therefore a bilinear function and so f(2) = = Hdo(a)

If f() € Ais left-unique and right-unique then f()°~! has the same prop-
erties . f() and f°~! are right-unique implies so are f()of°~() and f=*()of()
and their inverses which are same are both left-unique so these are both the
identity i.e. f(f°1(2)) = fo'(f(z)) = z. Because this has no singular point

F(fo72)) = foH(f(2)) = z ¥R Prove that a left-unique and right-
unique function is bilinear ***#¥F**¥4k% Qupnose a set T of functions in A is
such that if f() € T then h(f()) € T. Then this set is determined by the set
R C T, the root functions, such that for any function f() in 7" there exists a
member g() € R such that f() = g(). Such a set T will be called a rooted
set, rooted by the set R. Suppose a single root function () acts a root for T’
ie. Vf() € T[f() > r()]. Suppose another function r;() also has this property,
then Vf() € T[f() = r1()] and in particular r() = ri(). Likewise r1() = r().
Then by Theorem [11.1| r(2) = 51228 Such a rooted set will be called
singly-rooted. Thus the Toot functions associated with a singly rooted set are
related by a bilinear transformation.

From Theorem any root function k() is unique up to a bilinear func-
tion or transformation (also known as a Mdobius transformation or a linear
fractional transformation) i.e ¢;(z) = ZISZEE; so a root function is actually a
set of functions each member of which is related to any other member like this
for some set of values a,b,c,d € C such that ad — bc # 0. The terminology
below will for simplicity refer to this special set just as a single function, the
root function.

Lemma 11.2. FEvery function in A is in the set rooted by a left-unique
function.

Proof. 1f g() is left-unique then f(2) = f(¢°'(g(2))) so f() = g(). O
Theorem 11.3. If gof() = f(9() = g(f()) and g() is left-unique and
right-unique then f() ® g() = gof().

Proof. The condition on g() gives ¢°*(g()) = I and g(¢°~*() I and also

) =
f(g()) = g(f()). Suppose l(z) = hi(f(z)) and I(z) = ha(g(z)) for some
arbitrary analytic functions hi() and ho(). Then f(2) = f(¢° (g(2))) =
9° ' (9(f(2))) = ¢° ' (f(g(2))). Therefore f(g°~"(w ) =97 '(f(w)) generally
[where w = g(2)] and I(2) = hi(f(9° ' (9(2))) = ha (g~ (f ( (2))) = hs(f(9(2))
where h3() = h1(g°~*()). According to the criterion for a root function, f(g())
is the required root function for the set of possible analytic functions [(). O
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By considering the example when R is z — 22, Ry is 2 — 2% and I was
expecting the intersection to be given by the root function z — 2¢ (Rj).

Returning to functions in A there is a kind of discreteness in them which
is exemplified by the fact that there does not appear to be a function f() such
that z* = f() = 2% and 2% % f() and f() # 2%

11.1 old work

A common type of equation defining behaviour around a singular point is

f(2) = 92(f(9:(2))) (79)

where g2() and g1 () are right-unique functions. | what is it that makes ¢»(z) =
z+ 1 and g1(z) = z/e a trivial or not useful example of for f(z) =In(2)
whereas go(2) = z + 27 and ¢;(2) = z is not? it doesn’t relate one branch
to another and is interpretable (f(z) = 1+ f(z/e)) without considering f() as
multivalued. Is it that both go() and g¢1() are not the identity? Try using two
equations and f(z) = g2(f(2)). First look at algebraic functions. ]

Here the equality is between two sets of values. The more general form

f(2) = 92(2, f(91(2))) (80)

occurs later. [ the examples of this all came from combining solutions of
with z using arithmetic functions.|
Most of the examples above are actually special cases of

f(2) = g2(2, f(2)). (81)

koo skokoskosk sk ok sk sk ok ok kokokoskosk sk sk skosk skokokokoskok

A direct proof seems difficult. Suppose 2z; # g1(z1). The condition for f;()
to have no singular point at P, (21, fs(21)), using and (35), is that there is a
neighbourhood N of P such that for all points (2, fs(22)) and (23, fs(23)) € N,
29 = 23 < 29 ~ z3. This reduces to

AN of P{V¥(za, fs(22)), (23, fs(23)) € N[In € N[zo = 97" (23))] = 22 = 23] }.
(52)
To establish this it is sufficient to choose N so small that if z3 is included by
being sufficiently close to z; that none of g;(23), g1(g1(23)) etc. are included
i.e. the images of N under g;() repeated any number of times must not overlap
N itself.

The above arguments have assumed that g;() is single valued. It should be
possible to do this with a multivalued g¢;() because then z; = g(z2) just means
that z; is one of the values of g(z2). The equivalence classes are now more
complicated to construct but the principle is the same.
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Therefore these special fundamental solutions of that also satisfy
will be called the special solutions of . The reason that the word “simplest”
is no longer used is that this would be a constant function. Let fZ() be another
function that satisfies the conditions on f,() above then fX(z) = h*(fs(z)) for
some function ~2*() in A. Also f¥() has the same singular points as fs() (which
is a requirement of a special solution of ), which by Lemma is true
if and only if A*() has no singular points i.e. by Theorem [82] h*() is a bilinear
function. Therefore

[ If A*() is any function without a singular point (i.e. a bilinear function
by Theorem then by Lemma f5() will have singular points precisely
where f;() does and f7() will also satisfy i.e. the set of special solutions
of must include ZIZ}:E;; if fs(2) is included for all a, b, ¢,d € C. Can there
be any more? Any other such solution must take this form with a different
function h*() that will be not bilinear and so must have at least two singular
points somewhere and by Lemma[6.6] in accordance with the above argument,
h*(fs(z)) must have extra singular points. This contradicts the above argument
that h*(fs(z)) must have no singular or inversion point except when z satisfies
z=q1(z).]

Theorem 11.4. The set of special solutions to i.e. those that also
satisfy have singular points only where z = g1(z) where g;() is as in .
This set is the same as the set iizjf((j)) for arbitrary a,b,c,d € C if f,(2) is
itself a special solution of (29). Any solution to can be written as h(fs(z))

for some special solution fs(z) for some function h() in A.

[perhaps there are important ideas here but needs working out! If g;()
is not a linear function the equation z = g;(z) that determines the singular
points could have many solutions, [and g;() itself could be described by another
equation of the type or etc..] In such a case the original equation
for f() together with other similar equations to determine ¢, () etc. could
determine behaviour at a set of singular points simultaneously. In such a case
it might be a good idea to try to solve for the singular points and then with g;()
replaced by linear functions that give the same singular points, analyse each
separately using the results in Section [J] or extensions if necessary, and then
try to reconstruct the original function f() but note example indicating
that in this case an infinite number of singular points can sometimes occur.]

Now consider iteration applied to which gives

f(2) = 92(2, 92(01(2), [(97%(2)))) = ... =
92(2, 92(91(2), 92(97%(2), 92(97° (2), g2 (97", - - ) - .-) = [92( (), f(gl())]"”(Z)( |
83
where go appears n times in this expression. Now suppose ¢{"() is the identity
function : z — z then

F(2) = 92(2, 02(91(2), 92(932(2), . galg? " V(2), (2)) ). (84)
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This is last expression depends independently on z and f(z) through the func-
tions go() and ¢;() and can therefore be written as k(z, f(z)) i.e. can be
written in the form for different go() and g;(). Also it is conceivable that
for some value of n takes the simpler form again for different gs()
and ¢1(). In either of these cases the special solution of the respective iterated
form of can be defined as above. If this can be done for both cases the
following example suggests this might define the special solution for itself.

There are many results that can be obtained relating the solution sets
of with different values of go() and g;(). If holds then the same
relationship holds with f() replaced by k(f(I())), g2() replaced by k(go(k°~1()))
and g () replaced by 1°7*(g;(I())). Making these substitutions gives the same
relationship with the function k() applied to both sides and expressed in terms
of the independent variable w given by z = [(w). For example suppose k(z) =
az+ b and [(z) = cz + d then the function f*(2) = k(f(I(2))) = af(cz+d)+b
satisfies f*(2) = g7 (f*(g3(2))) i.e. (79) with gi(z) = ag2((z — b)/a) + b and
95(2) = (g1(cz +d) —d)/c.

If in equation g9 () is applied to both sides and the result expressed
in terms of the variable w = ¢;(z) then the same relationship holds with gs()
replaced by g5~ '() and g;() replaced by ¢¢~*().

The inverse functions of both sides of Equation again give an equation
of the same form showing that f°~! satisfies the equation of the same form but
with go() replaced by ¢¢7*() and g;() replaced by g5~ ().

In these general arguments, it has to be borne in mind that fo='(f(z))
could have several components and is not necessarily just the identity function
as in section [
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