
Date: 2026-01-13

Turing Machines

Abstract

Mathematics Subject Classification: 68Q25

Keywords: Turing Machine (TM).

1 Introduction

A development is given here for the analysis techniques for non-terminating
Turing Machines (TM’s) that I described earlier in [1] and [2]. This technique
was motivated by my earlier work but can be largely described without it
resulting in a very short paper where this prior material has been removed.
This consists of a simple procedure I call the development algorithm because
it seems to be a very natural and general outworking of the rules of a Turing
Machine (TM). The material removed and is available as an old version ([5],[6])
to show where the ideas came from, and this much shortened version of the
paper has taken its place as the latest version under active editing. Comments
are welcome. Please send them to john.h.nixon1@gmail.com

A (non-terminating) Turing Machine (TM) consists of a read-write head
that moves by one square at a time on a one-dimensional tape that is infinite
in both directions marked off into squares on each of which which one of a
set of symbols is written. Any symbol on the tape remains there until it is
overwritten by the TM. The action of the TM is as follows. First the current
symbol is read, and depending on this and the machine’s internal state, three
actions are performed in a cycle. (1) The new symbol is printed at the current
square, (2) the TM enters a new state, and (3) the TM moves right or left
by one square. These cycles (steps) are repeated indefinitely. In order to
describe the action of a TM, configuration sets (CS’s) were introduced. A CS
is a set of complete configurations (all the tape symbols with pointer position
indicated, and the machine state of the TM) such that the CS is specified by
giving a finite set of symbols in a set of contiguous pointer positions together
with the machine state and such that the pointer position is where one of the
given symbols is given or adjacent to one. In a CS all possible configurations
that are consistent with the specified symbols and machine state are included.
The notation is the specified symbol string with the pointer indicated by an
underscore (if it is just off the end of the symbol string) or an underline and

2 John Nixon

the machine state is on the left. For example with machine states 1,2,3, etc.
and symbols as lower case letters the following are CSs: 2abca, 1 aabbcac.
The length of the CS is the length of the symbol string which is finite.

A computation rule or rule is a pair of CS’s linked by → indicating the
forward direction of the computation. It indicates that one or more TM steps
will take any configuration in the CS on the left of → to a configuration in
the CS on the right. In this paper rules will not include symbols on the tape
that are not read by the TM. A very convenient way of a specifying a TM is
to use a set rules involving CS’s of length 1.

2 A very simple example

The following example of a Turing Machine (TM) and its analysis illustrate
all the ideas of the paper. The TM is given by

1a → 2b 1b → 2 a

2a → 1b 2b → 2 a

3a → 3a 3b → 1 b

. (1)

and the analysis developed from it is as follows.

1


a→ 2b

{
a→ 1bb (1aa → 1bb)
b→ 2 aa, (α∗)

b→ 2 a

{
a→ 2bb (2aa → 2bb)
b→ 2 aa(α∗)

2


a→ 1b

{
a→ 2bb (2aa → 2bb)
b→ 2 aa(α∗)

b→ 2 a(2b → 2 a, α)

3



a→ 3a (3a → 3a)

b→ 1 b


a→ 2 aa(α∗)

b→ 2 ab


a→ 2 aaa

{
a→ 2bbbb
b→ 2 aaaa

b→ 2 aab(α∗)

(2)

This can be continued using the rules in Table 1 showing how the length of
the CS’s can increase indefinitely and the cycles increase in size without limit.
Here the pseudo-sate D arises separately from A,B and C.

Developments in the analysis techniques for non-terminating Turing Machines 3

Table 1: Computation rules derived from TM 1

A: 2 an B: 1bn C: 2bn D: 3an

a → B (n even) a → C a → B a → D
a → C (n odd) b → A b → A b → B*.
b → A

Here each column corresponds to the CS at its head labelled from A to D.
The meaning of the entries in the body of the table is that if the symbol on the
left is at the pointer in the CS (extending the string by one symbol), the result
of the following computation is the CS indicated on the right with n replaced
by n+1. The result at * is actually 1an−2bbb if n > 2 so that the new n is now
3. The other cases are dealt with by the rules 3ab → 3ab → 2 aa, 3bb → 2 ab,
and 3aab → 3aab → 1bbb . Notice that when the pointer swaps ends going
right, only b’s are produced, and if it goes left only a’s are produced. Also
the TM cannot reach a configuration in D by steps in Table 1 unless it started
from a configuration in D. From there as long as the new symbol is a, the TM
continues to the right. If a b is reached, it goes to a configuration in B, from
where successive a’s alternate between CS’s B and C. If a b is reached in either
B or C then it swaps sides leaving a’s and getting to A. Then more b’s just
leave it in A, but an a makes it swap sides to B or C according to whether n is
even or odd respectively. Thus the description of TM (5) is clearly explained
as an expanding cycle, which to me seems a satisfactory place to leave the
general analysis of this example.

3 The development algorithm

The algorithm is very simple and is as follows. Starting from any CS, every
possible symbol is added at the pointer position leading to a set of branches
and in each case the computation continues as far as possible until a symbol in
a new position needs to be read (a final CS). The resulting CS forms the next
starting point. Whenever a new final CS is reached, if a repeating condition
has occurred with other CS’s (*) on the path to it from the root (an initial
CS only specifying the machine state), i.e. where the state, pointer position
(right or left) and the symbol string match between a CS and another CS that
is in the path to it from the root of the tree. Then between these two CS’s
the pointer moves in a range. A repetition also requires every symbol in the
second CS in the range to match the corresponding symbol from the first CS.
If this happens the repeating cycle is identified and written within parentheses
and optionally labelled by a greek letter. This terminates this branch of the
development because any further development on the branch is a special case
of analysis that has already been done. This assumes all branches from CS

4 John Nixon

* have already been developed. Likewise if a CS is reached that matches a
repeating cycle already found elsewhere, the label for that cycle is given and
an asterisk indicating where to refer to for its continuation. The algorithm
starts from every CS (root) that consists of just the TM state i.e. the string
of symbols has length 0.

4 Formulating the condition for a repetition

In these trees (i.e. results of the development algorithm e.g (6), (7) and (8) for
TM (5) or (2) for TM (1)), if on any branch, the final CS matches an earlier
CS in such a way that the loop can be repeated (this might only work after
some symbols not involved in the loop are ignored in which case the repeating
loop needs to be first applied to the simpler case where these extra symbols
are absent) then the algorithm terminates the branch because continuing is a
special case of what has already been done. If this happens, all the CS’s that
match the final CS in the loop should be listed in order in parentheses, so that
many other results of the TM can be found easily.

i + 1− r(i) r(i) i

4 x x x x

4 2 5 x x x | x x

3 4 6 x x | x x x x

5 3 7 x x x x | x x x

8 1 8 x x x x x x x | x

minimum: p = 3 ↑

Figure 1: A schematic example of a repetition (states omitted). Here
l1 = 4,l2 = 8, and p = 3 therefore m = 2 and t = 6 and the repeating rule
has the form x̂xxxxx → xxxxx̂x where the x’s represent any symbols, and the
’s are where the symbols are added at the pointer position. The strings of
symbols under the widehat ̂must be the same. These are the m symbols that
are repeated. The ↑ is where p = 3 giving a visual indication of the end of
range of the symbols that are involved in the repeating computation rule.

Suppose

CS0
α1→ CS1

α2→ . . . (3)

is such a branch that ends in a repeating loop and the pointer is at the right in
each CS where CSi has length i , and in step i +1 from CSi to CSi+1 the pointer
reaches and uses r(i) symbols (this excludes the last symbol arrived at that
is not yet read). CS0 is just a CS of length 0 which only defines the machine

Developments in the analysis techniques for non-terminating Turing Machines 5

state and is the root of a tree of CS’s developed from it by the development
algorithm. After l2 steps in (3) giving a CS of length i = l2 the condition for
a repetition of an earlier CS of length i = l1 is as follows. This involves l2 − l1
steps in (3).

Because the symbols are added on the right, the tape positions will be
counted going to the right and the leftmost position is position 1 in all the CS’s.
The pointer starts at l1 +1 to read the next symbol and first goes to l1 +2 via
l1 − r(l1 +1)+ 2 (i.e. a segment of length r(l1 +1)). The complete potentially
repeating computation reaches the following extreme pointer positions in this
order l1+1, l1+2− r(l1+1), l1+2, l1+3− r(l1+2), . . . l2+1− r(l2), l2 because
in the final step to get CSl2 the pointer does not go beyond l2. The range of
the tape affected by the computation is from position p to l2 inclusive (see
Figure 1) where

p =
min

l1 + 1 ≤ i ≤ l2
{i + 1− r(i)} . (4)

The repeating condition implies that the states match between the start and
end of the computation and there is a pair of matching substrings of m symbols
in the two CS’s CSl1 and CSl2 such that each substring lies within the range
p to l2 and must include all the symbols in that range on the left hand end
otherwise the computation could not be repeated due to a mismatch. Therefore
p = l1 − m + 1 is the leftmost symbol position involved in the matching i.e.
m = l1 − p + 1. The length of the potentially repeating rule is the length of
tape involved in (4) i.e. t = l2 − p + 1. Therefore t −m = l2 − l1 ≥ 1. One
of the shortest possible examples is 3c → 3c in which, l1 = 0 and l2 = 1 and
p = 1 therefore m = 0 and t = 1 so in general t > m ≥ 0.

The notation | was introduced in the CS’s to indicate the limit beyond
which the pointer did not go to obtain the CS from the preceding one. This is
a visual indication of r(i) which is the number of symbols between | and the
end of the string where the symbol is, where i is the length of the current
CS.

5 A more substantial example

The following example was also studied.

6 John Nixon

1a → 2b

1b → 3 b

1c → 1b

2a → 3b

2b → 2c

2c → 1 c

3a → 1 a

3b → 1 a

3c → 3c

(5)

By applying the development algorithm to TM 5 the results in (6), (7)
and (8) were obtained which seem to adequately describe the TM and lead
to Table 2 which is summarised by Figure 2 and shows how the TM can be
‘trapped’ in a steady movement to its left.

1



a→ 2|b


a→ 3b|b (ϵ)

{
d→ 1 aba|(1aad → 1 aba)
c→ 3bb|c (θ∗)

b→ 2b|c (ζ∗)
c→ 3 bc|(β∗)

b→ 3 b|



d→ 1 a|b(1db → 1 ab)

c→ 2|bb (α)


ad→ 3 b|aba(3cbad → 3bbbd → 3 baba)
ac→ 3bbb|c (θ∗)
b→ 2bb|c (ζ∗)
c→ 1 abc|(η∗, ignore x)

c→ 1|b (1c → 1b , γ)

(6)

2



a→ 3|b (ϵ)

{
d→ 3 ba|(δ∗)
c→ 3b|c (θ∗)

b→ 2|c (2b → 2c , ζ)

c→ 1 c|


d→ 3 bc|(β) x=a,b,c→ 1 abc(η)



a→ 1 aba|c(1abb → 1aab → 1bba → 1 aba)

b→ 3 b|abc


(x = d, 3bd → 3 ba)
d,x=c→ 1 a|babc(1db → 1 ab)
c,x=c→ 3 baba|c(3cbab → 3 baba)

c→ 1b4 (γ∗)
c→ 1bb (γ∗)

(7)

Developments in the analysis techniques for non-terminating Turing Machines 7

3


d→ 1 a|


a→ 3|bb (ϵ∗)
b→ 3 b|a(3bd → 3 ba, δ)
c→ 2|bb (α∗)

c→ 3|c (3c → 3c , θ)

(8)

By taking the longest results of the repeating cycles on the RHS’s of (6),(7)
and (8) i.e. 1 aba, 3 baba and adding every symbol in turn gives 1aaba →
1 abaa, 1aabaa → C, 1babaa → E, 1cabaa → 3b5 , 1baba → 3 baba, 3ababa →
A, 3bbaba → A, 3cbaba → E, 1caba → 2bbbb where the capital letter notation
for pseudo-states in Table 2 has been used. Another round of this generates
all the results of Table 2 because in Table 2 all possible new symbols to be
read are included.

Table 2: A finite state machine going left derived from TM 5

A: 1 ababa B: 1 abaab C: 1 abaaa D: 3 babab E: 3 babaa

a → B a → C a → C a → A a → A
b → D b → E b → E b → A b → A
c → D c → D c → D c → D c → E

Start

��TM 5 progresses by sequences of
steps each moving the pointer left by
one space and restricts the pointer
to positions in a window of length 6.

Has the pointer reached one position
then another 5 spaces to its left?

yesoo

no
��

Continue the TM by one step

OO

Figure 2: Summary of the results of the analysis of TM(5)

Table 2 implies that the pointer is constrained to being in a moving window
of length 6 that moves left by one space when the pointer moves just to its
left. This is because Table 2 includes every symbol added at the left in every
pseudo-state and the effect in each case is to leave the pointer to the left of
the string. Because of this, if a snapshot is taken of its behaviour whenever
the TM reaches just beyond the left hand end of the window, whatever symbol
it finds there, the result will be at the next snapshot that the symbols of the
window have changed depending on the previous symbols there and the new
symbol. Therefore if the TM reaches position 6 followed by position 1 then
the above argument involving the moving window applies. This condition of
course will not necessarily happen but once started (depending on the initial
contents of the tape) must continue indefinitely.

8 John Nixon

Consider how the development of 2|bb in (6) is obtained from that of 2|b .
Putting a b on the left gives the first result 1baba → 3 baba. This results in
two loops because both starting points 3cbad and 3bbbd match the endpoint
3 baba. This is indicated by 3cbad → 3bbbd → 3 baba. The other cases are
very easy. Note that the | has no meaning unless each symbol is added one at
a time so they are omitted if this does not happen.

The behaviours of the two examples of TM’s is completely different though
each description does depend somewhat on the configuration the TM starts off
in.

References

[1] Methods for Understanding Turing Machine Computations

[2] Reverse engineering Turing Machines and the Collatz Conjecture

[3] The previous version in D of the computer program for analysis of Turing
Machines

[4] Program for just doing the backward search for a single CS

[5] Turing machine notes 2025.pdf

[6] Turing machine notes 2025.txt

https://www.longdom.org/articles/methods-for-understanding-turing-machine-computations.pdf
https://www.longdom.org/articles/reverse-engineering-turing-machines-and-insights-into-the-collatz-conjecture.pdf
https://www.bluesky-home.co.uk/tie_v2_1.txt
https://www.bluesky-home.co.uk/tie_v2_1.txt
https://www.bluesky-home.co.uk/origins.txt
https://www.bluesky-home.co.uk/2025_Turing_notes.pdf
https://www.bluesky-home.co.uk/2025_Turing_notes.txt

	Introduction
	A very simple example
	The development algorithm
	Formulating the condition for a repetition
	A more substantial example

