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Partial differential equations

1 Introduction

The literature of basic work on partial differential equations (PDE’s) and sys-
tems of them seems to be mainly divided into two parts, that based on knowl-
edge of modern differential geometry and that just based on multivariable
calculus. The first part I am not so familiar with and I am just getting to
grips with what seems most important ([5, 6, 7, 8]) of which Boothby’s book
has been most useful for the basic concepts. This geometric approach is based
on (1) regarding the independent and dependent variables all on the same
footing using a coordinate-free methods and (2) using the basic ideas of dif-
ferential geometry such as vector fields, forms, (types of tensors) and exterior
algebra, which is very elegant but quite complicated. Much of this work was
synthesised in the work of Élie Cartan. I think it likely that this geometric
approach will provide another way of getting at essentially the same results
found here.

However the older work is often quite hard to read due to difficult notation
and concepts (apart from the annoying gothic script letters!). This is not
often referred to in the basic texts. This document makes minimal use of this
material except some of what is in Olver’s book [2].

Firstly there is a heuristic argument showing a general equivalence to cou-
pled sets of ODE’s in different directions, but these directions depend in gen-
eral on the boundary conditions of the original PDE problem. This argument
suggests that for a set of p PDE’s of first order involving p unknowns, p char-
acteristic directions can always be found but some might coincide with each
other or might involve complex numbers. The concept probably arose initially
in the case of the wave equation in one variable of space (x) and one of time
(t) ∂2ϕ/∂t2 = c2∂2ϕ/∂x2 and plays a central role in the well-known theory of
linear second order PDE’s with two independent variables and the appropriate
type of boundary/initial conditions for a unique solution (see for example [4]
or [3]).

It goes something like this. If a system of PDE’s has solutions for a set of
dependent variables say u1, u2, . . . up as functions of the independent variables
x1, . . . xn in a region containing the initial given data and these solutions are
assumed unique in a region as determined by the Cauchy-Kovalevskaya (CK)
theorem, which is described in Olver [2] showing the uniqueness of the solution
of the system in a neighbourhood of a surface where initial values of all the
unknowns are specified but naturally this can only be done (section 2.6) if the
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initial surface does not contain any of the characteristic directions. Then if
hypothetically all the dependent variables except one are given their values
(by an oracle that somehow managed to guess them) the system would then
be a system of first order PDE’s for the single remaining unknown. Just one
such PDE with the CK theorem would then determine a unique solution for
this unknown using the initial data. These latter problems can always be
solved for the remaining unknown by integrating along “strips” from an initial
surface provided it does not contain any of these directions (Cauchy/Monge’s
method)[4]. This process could be repeated, updating each unknown in turn,
and the whole cycle repeated until convergence starting with an initial estimate
of all the unknowns consistent with the initial data. This argument suggests
that in general there will be p directions to integrate to get the solution i.e.
the original system is equivalent to a set p coupled systems of ODE’s one for
each unknown.

In the general case nothing can be said about these directions because they
depend on the boundary conditions, but in many special cases of systems of
PDE’s some information about these directions is available from the original
system itself. This is because there are simplifications that are independent
of the boundary conditions can be searched for i.e. minimisation of dimension
(independent and dependent variables). A reduced number of independent
variables in which the equations can be expressed implies that any charac-
teristic directions must be within the submanifolds defined by this reduced
number of variables. Earlier I proposed that the numbers of independent and
dependant variables be minimised and described methods for finding them [1].
In this paper I have developed this a little giving examples of what could be
termed “partial” minimisation of dimension. This can give rise to some inter-
esting cases such as when only two characteristic directions appear when three
were expected showing that this is a case where two characteristic directions
coincide but they are not necessarily in involution because if they were it would
result in a reduction of dimension. Most treatments of this problem seem to
not go much beyond identifying the characteristics and the relationship be-
tween these and the domains of influence and dependence of the solution on
given data.

The main theme of the theory of PDE’s seems to me to be to classify and
characterise these special cases many of which are well-known and some of
which I have identified here and in my earlier work[1].

When considering analytic systems of partial differential equations (PDE’s)
in general, two preliminary steps need to be taken first. (1) to simplify this to
the treatment of a first order system, because any such system can be made
first order by introducing new variables (so the original system is defined by
a subset of the variables of a first order system) and (2) to consider only such
systems that are locally solvable (Nixon 1991, [2] Olver 1986) because this can
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always be arranged, at least for linear systems, by adding extra equations by
cross-differentiation provided the original system is consistent.

These techniques complement other techniques such as the use of symme-
tries that Olver has described [2] and should be applied first because of the
drastic simplifications that can be obtained.

While developing these ideas, I was swapping between the general theory
and the examples, each helping to improve the understanding of the other,
and as a result it was difficult to find a way to present the work, with the
options being to present the examples first and constantly refer forward to
the general treatment, or the present the general theory first without prior
motivating examples. In the end I chose the latter, so the outline of the paper
is as follows for linear systems: In section 2 I show how to find the integrability
conditions giving rise to local solvability. In section 3 I describe the extension
of the method of minimising dimension to “partial” minimisation of dimension
i.e. doing it for a subset of the system. In section 4 I describe another approach
to the 2D Laplace equation in detail.

2 The integrability conditions and local solv-

ability

Start with the linear system

p∑
ı=1

n∑
l=1

∂uı

∂xl

aılk(x) +

p∑
ı=1

uıbık(x) = 0 for 1 ≤ k ≤ m. (1)

Here I use ı where I used i before in (16) and following in [1] to distinguish it
from the imaginary number i, and the 2D array called a there will be called b
here to distinguish it from the 3D array also called a in [1].

Suppose the 3D array aıjk with dimensions p×n×m is such that the n×n
matrices

(cı)jl =
m∑
k=1

hklaıjk are skew symmetric for 1 ≤ ı ≤ p. (2)

These are the equations derived by equating to zero all the second order terms
arising from the linear combination

m∑
k=1

hk(x).∇ ( equation k of (1)) (3)

so if the hk satisfy (2), the resulting linear combination is also first order and
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can be written as

p∑
ı=1

n∑
j=1

∂ui

∂xj

[
m∑
k=1

n∑
l=1

hkl
∂aıjk
∂xl

+
m∑
k=1

bıkhkj

]
+

p∑
ı=1

ui

[
m∑
k=1

n∑
l=1

hkl
∂bık
∂xl

]
= 0.

(4)
The condition (2) can be written as

m∑
k=1

aıjkhkl +
m∑
k=1

aılkhkj = 0 for 1 ≤ ı ≤ p and 1 ≤ j, l ≤ n. (5)

These are linear equations for the mn elements of h therefore they can be
written in the form ∑

β

AαβHβ = 0 for all α. (6)

The parameter α is indexed by ı, j, l and β is indexed by the two indices of h,
and the number of values of α and β are pn2 and mn respectively (but note
that the equations (2) have redundancy because if l ̸= j these indices can be
swapped giving the same result).

The procedure I was suggesting in [1] to be applied to the system (1) is
to repeatedly find h, one set of all the coefficients hkl satisfying (5) and then
construct the corresponding equation (4) and add it to the original system
(1). Keep doing this until there are no non-zero solutions for h such that the
resulting PDE is not just linear combination of the original system (1), again
of the form (1).

To understand equation (5) in terms of matrices let λ be an index that
takes the place of l as an index of H. Then H and β will be indexed by
k and λ, so that one can speak of row (ı, j, l) and column (k, λ) of A. To
evaluate the element in this position, pick out the coefficient of hkλ in (5)
giving aıjkδlλ+aılkδjλ making it obvious that A splits naturally into two terms
which will be referred to as A1 and A2 respectively. If the indices l and λ
vary most slowly in α and β respectively (and j varies slower than ı) then A1

can be written as an n × n matrix of matrices of dimension pn × m where
the off-diagonal matrix terms of A1 are zero and the diagonal terms are all
the same, say B. Then B is the pn × m matrix having all the elements aıjk
arranged so that this is the element on row (ı, j) and column k.

A2 can also be split naturally into submatrices but is more complicated.
First split B into n rows corresponding to the n values of j. These could be
called B1 . . . Bn such that Bj is the p ×m matrix with element aıjk on row ı
and column k. Then A2 is naturally split into an n×n matrix indexed by rows
l and columns λ such that the (l, λ) element is a matrix like B but where all
the sub-matrices Bj are replaced by zero except the one in the position of Bλ

and it is Bl.



Notes of systems of partial differential equations 5

If this is sketched out it is obvious that all the rows of A1 are replicated in
the rows of A2 and vice versa. Specifically, major row l subrow j (for all values
of ı) of A1 are the same as major row j subrow l (for all values of ı) of A2 and
they are given by the matrix Bj in position l amongst a set of n matrices all
the same dimensions (p×m) in a row where these others are all zero matrices.
Therefore each row of A is the sum of two rows of A1. Also each row of A1 will
appear multiplied by two in A so every row of A1 is a linear combination of the
rows of A and vice versa i.e. the rows of A and A1 span the same vector space.
Considering A1 shows that the dimension of this vector space is rn where r is
the rank of B so the rank of A is mn if and only if the rank of B is m. In
terms of these submatrices, (6) can be written as

Blh̃j +Bjh̃l = 0 for 1 ≤ j, l ≤ n (7)

where h̃j =


h1j

h2j

. . .
hmj

 i.e. the vectors h̃j are the columns of the matrix h of which

the rows are hk. The matrices Bj have dimensions p ×m therefore if m ≤ p
and if at least one of the B’s eg Bs has full rank then (7) for l = j = s gives
h̃s = 0. Then put l = s gives Bsh̃j = 0 for 1 ≤ j ≤ n i.e. h = 0 so a condition
under which this process of repeatedly adding integrability conditions to the
original system stops is that at least one of the submatrices Bs has full rank
because this ensures that any new integrability conditions obtained by this
process are just 0 = 0.

After one application of the method with just one non-zero solution for h
picked out, the new array in place of aıjk is

a∗ıjk =

{
aıjk for 1 ≤ k ≤ m
eıj for k = m+ 1

(8)

where from (4)

eıj =
m∑
k=1

n∑
l=1

hkl
∂aıjk
∂xl

+
m∑
k=1

bıkhkj (9)

and the hkl are the components of one non-trivial solution for h. This would
be expected to increase the rank of at least one of the matrices Bj by one. If it
did not then there is a linear combination (LC) say wk of the system (1) such
that

∑m
k=1wkaıjk = eıj and if from the newly derived equation (4) this linear

combination of (1) is subtracted a linear combination of the uı = 0 is obtained
so if this is non-trivial, one of these variables can be eliminated reducing the
size of the system and eventually this process will end as above.

In general at each step of the process there are 3 cases that can arise
regardless of whether m ≤ p or not: (1) there is a non-zero solution h which
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leads to a new PDE (4) which is not a LC of the the system (1) (2) there is a
non-zero solution h but it leads to a LC of (1) or (3) there is only the solution
h = 0. Case (1) cannot be repeated indefinitely unless an inconsistency arises
showing that there are no solutions, because after some point, each time it
happens more unknowns and their derivatives can be eliminated eventually
leading to halting of the procedure i.e. cases (2) or (3) giving no new linearly
independent equations.

Making a change of independent variables x1, . . . xn → t, y1, . . . yn−1 gives

∂uı

∂xl

=
n−1∑
j=1

∂uı

∂yj

∂yj
∂xl

+
∂uı

∂t

∂t

∂xl

(10)

and when expressed in terms of these variables, (1) gives

p∑
ı=1

n∑
l=1

(
n−1∑
j=1

∂uı

∂yj

∂yj
∂xl

+
∂uı

∂t

∂t

∂xl

)
aılk(x) +

p∑
ı=1

uıbık(x) = 0 for 1 ≤ k ≤ m.

(11)
These equations can be solved for ∂uı

∂t
if and only if there exists a vector ∂t

∂xl

such that

rank

(
n∑

l=1

∂t

∂xl

aılk

)
= rank

(
n∑

l=1

∂t

∂xl

aılk,

p∑
ı=1

uıbık

)
(12)

where the matrices have row index ı and column index k and the one on the
right is an augmented matrix with one extra column, but this is the condition
that the original system can be put into Cauchy Kovalevskaya form ensuring
that it is locally solvable ([2] p166). If m = p the matrix M on the left is
square and if at least one of the Bj has maximal rank then M is non-singular
because this matrix is a linear combination of the B’s it can be chosen to be
non-singular because at least one of the B’s is also. Therefore (12) holds and
local solvability provided m = p and at least one of the Bj has maximal rank.

3 Minimisation of dimension for a subset of

the original system

The method used here is a modification and extension of the method I used
in [1] to search for a reduced number of independent variables which can be
used to express a linear system of PDE’s. The modification is to only require a
subset of m′ < m linear combinations of the original system but the enhanced
requirement is that r = 1 i.e. the equations are reduced to ODE’s. It is
hoped that several such systems can be found that are together equivalent
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to the original system. Thus what is required is a change of independent
variables from x1, . . . xn to z1, . . . zn such that say z1, . . . zn−1 are absent from
the derivatives of the linear combinations of original system when expressed in
terms of the z’s. Each such set of linear combinations of the original system
forms a vector space at each point x and any set of spanning vectors can be
chosen to represent it giving equivalent results. Following the notation of [1]
with the modifications in section 2 above, if the linear combinations are

m∑
k=1

gkq(x)

[
p∑

ı=1

n∑
j=1

∂uı

∂xj

aıjk(x) +

p∑
ı=1

uıbık(x)

]
= 0 for 1 ≤ q ≤ m′ (13)

this gives the condition

n∑
j=1

m∑
k=1

gkq
∂zl
∂xj

aıjk(x) = 0 for 1 ≤ l ≤ n− 1; 1 ≤ q ≤ m′; 1 ≤ ı ≤ p (14)

i.e. for each q such that 1 ≤ q ≤ m′, there are n− 1 functionally independent
solutions z of

n∑
j=1

m∑
k=1

gkq
∂z

∂xj

aıjk(x) = 0 for 1 ≤ ı ≤ p (15)

so the Lie algebra generated by fıq for 1 ≤ ı ≤ p where

(fıq)j =
n∑

j=1

m∑
k=1

gkqaıjk(x)
∂

∂xj

(16)

has orbits of dimension 1 for each q satisfying 1 ≤ q ≤ m′. This condition on
the Lie algebra is trivial and only requires that the set of vector fields are all
everywhere parallel i.e. the matrix representing them has rank 1 so for each q
the condition is

Rank

(
m∑
k=1

gkaıjk(x)

)
= 1. (17)

This can be written a set of 2× 2 determinants that are all zero i.e.(
m∑

k1=1

a11k1gk1

)(
m∑

k2=1

aıjk2gk2

)
−

(
m∑

k1=1

a1jk1gk1

)(
m∑

k2=1

aı1k2gk2

)
= 0 for 2 ≤ j ≤ n; 2 ≤ ı ≤ p

(18)
or more compactly as

m∑
k1=1

m∑
k2=1

∣∣∣∣a11k1 a1jk1
aı1k2 aıjk2

∣∣∣∣ gk1gm

gk2
gm

= 0 for 2 ≤ j ≤ n; 2 ≤ ı ≤ p (19)
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In the rest of this section it will be assumed that m = p because this makes
the results much simpler. The number of equations is (n − 1)(m − 1) for the
m− 1 ratios of the g’s so it is very overdetermined.

Each equation of (19) is a polynomial in the m − 1 variables zk = gk/gm
for 1 ≤ k ≤ m − 1 of total degree 2 equated to zero. Keeping j fixed and
arbitrary, there are m − 1 such equations. If from equations for ı is 2 and
3, the term for z2m−1 is eliminated by making a linear combination of these
equations, the resulting equation will be linear in zm−1, and can be solved for
it. In more detail, if equation 2 in (19) is written as a polynomial in zm−1, it has
the form P02(z1, . . . zm−2) + P12(z1 . . . zm−2)zm−1 + P22z

2
m−1 = 0 where P02 has

total degree 2, P12 has total degree 1 i.e. a linear combination of z1 . . . zm−2,
and P22 is a constant. This is because the whole expression has a total degree
of 2 i.e. the sum of the powers of the z’s in each term is ≤ 2. Solving for
z2m−1 and substituting this into the corresponding equation for ı = 3 with
notation P03, P13, and P23 gives zm−1 = P23P02−P22P03

P22P13−P23P12
where the numerator

has total degree 2 and the denominator has total degree 1. If this cancels
down to another polynomial R linear in z1, . . . zm−2 then substituting back
gives another polynomial of total degree 2 in z1 . . . zm−2 i.e. P0i(z1 . . . zm−2) +
P1i(z1 . . . zm−2)R(z1 . . . zm−2)+P2iR(z1 . . . zm−2)

2 = 0 and a linear combination
of z1 . . . zm−1 is zero. It is not clear under what circumstances this would be
the case.

Go back to the case m = 3. Equation (19) can be written in the form

B0ı +B1ız1 +B2ız2 +B3ız
2
1 +B4ız1z2 +B5ız

2
2 = 0 (20)

where

B0ı =

∣∣∣∣ a113 a1j3
aı13 aıj3

∣∣∣∣
B1ı =

∣∣∣∣ a111 a1j1
aı13 aıj3

∣∣∣∣+ ∣∣∣∣ a113 a1j3
aı11 aıj1

∣∣∣∣
B2ı =

∣∣∣∣ a112 a1j2
aı13 aıj3

∣∣∣∣+ ∣∣∣∣ a113 a1j3
aı12 aıj2

∣∣∣∣
B3ı =

∣∣∣∣ a111 a1j1
aı11 aıj1

∣∣∣∣
B4ı =

∣∣∣∣ a111 a1j1
aı12 aıj2

∣∣∣∣+ ∣∣∣∣ a112 a1j1
aı11 aıj1

∣∣∣∣
B5ı =

∣∣∣∣ a112 a1j2
aı12 aıj2

∣∣∣∣

(21)

The z22 can be eliminated from these equations by taking B53 times (20)
for ı = 2 and subtracting B52 times (20) for ı = 3. This can be written as

C1 + C2z1 + C3z2 + C4z
2
1 + C5z1z2 = 0 (22)



Notes of systems of partial differential equations 9

where

C1 = B53B02 −B52B03 =

∣∣∣∣ B53 B52

B03 B02

∣∣∣∣
C2 = B53B12 −B52B13 =

∣∣∣∣ B53 B52

B13 B12

∣∣∣∣
C3 = B53B22 −B52B23 =

∣∣∣∣ B53 B52

B23 B22

∣∣∣∣
C4 = B53B32 −B52B33 =

∣∣∣∣ B53 B52

B33 B32

∣∣∣∣
C5 = B53B42 −B52B43 =

∣∣∣∣ B53 B52

B43 B42

∣∣∣∣

. (23)

Solving for z2 gives z2 =
−C1−C2z1−C4z21

C3+C5z1
. If this cancels down to an expression

linear in z1 then the value of z1 = −C3/C5 making the denominator vanish

does the same for the numerator i.e. C1 − C2
C3

C5
+ C4

C2
3

C2
5
= 0 or

C1C
2
5 − C2C3C5 + C4C

2
3 = 0 (24)

If this happens, z1 and z2 are linearly related so (22) gives a quadratic
equation for z1 so there are in general two pairs of values of (z1, z2) so two 1D
vector spaces of values of g. Therefore there cannot be 3 different values of z1
and z2 which was expected by analogy with the examples in section (4) in two
independent variables. This strongly suggests that this is a special degenerate
case not generally to be expected.

The set of vectors g satisfying this could be just scalar multiples of each
other or they could form the vector space of dimension ≥ 2 and there could in
general be more than one such vector space satisfying this. Here the larger m′

is, the larger the number of different vectors g that can be found is, the more
useful the result is potentially.

4 Examples that motivated the general theory

4.1 The one dimensional wave equation

A generalised form of the 1D wave equation

∂2u

∂x∂y
+ F

(
∂u

∂x
,
∂u

∂y
, u, x, y

)
= 0 (25)

can be expressed as

∂u1

∂y
+ F

(
u1,

∂u
∂y
, u, x, y

)
= 0

∂u
∂x

− u1 = 0
(26)
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where if u is known over the whole space then u1 can be obtained by integrating
(26).1 along lines of constant x, and if u1 is known over the whole space then
u can be obtained by integrating (26).2 along lines of constant y. Thus the
PDE is can be thought of as two coupled systems of ODE’s. Such equations
can also be written as Volterra integral equations.

4.2 The two dimensional Laplace equation

Another example follows where a similar thing happens is with the Laplace
equation but is a much more complicated.

Suppose ∂2u
∂x2 +

∂2u
∂y2

= 0 i.e. u satisfies the Laplace equation. In the notation

of [1] let x1 = x, x2 = y, u1 = u, then the system of 3 equations is for example
k = 1 : u2 =

∂u1

∂x1
, for k = 2 : u3 =

∂u1

∂x2
which for k = 3 : ∂u2

∂x1
+ ∂u3

∂x2
= 0 and is

a first order system of the form (1). The 3D array aıjk is given by

a =

1 0
0 0
0 0

0 1
0 0
0 0

0 0
1 0
0 1

 (27)

where the rows and columns of the separate matrices are indexed by ı and j
respectively and k counts the matrices from left to right.

Equation (27) can be written as aıjk = δı1δj1δk1 + δı1δj2δk2 + (δı2δj1 +
δı3δj2)δk3 and (2) gives

∑3
k=1 hklaıjk = h1lδı1δj1 + h2lδı1δj2 + h3l(δı2δj1 + δı3δj2)

is skew symmetric with respect to j and l for 1 ≤ ı ≤ 3. For j = l = 1
this gives h11δı1 + h31δı2 = 0 i.e. h11 = h31 = 0. For j = l = 2 this gives
similarly h22 = h32 = 0. For j = 1, l = 2, equating it to minus the same
expression with j = 2, l = 1 gives h31 = h32 = 0 and h12 = −h21. Only this
last result allows for a non-zero solution and shows that the system must be
extended by adding an extra equation from (3) in which the array bık is the

coefficient of uı in equation k i.e. b =

0 0 0
1 0 0
0 1 0

 and hkj =

 0 −h21

h21 0
0 0

 so

bh =

 0 0
0 −h21

h21 0

. This becomes the fourth equation of the following system

(28) the drastic simplification being due to the fact that all the coefficients are
constants. Repeating this to search for a linear combination of the now four
terms in (3) (because m = 4) results in extra terms being added to (2) which
are h4l(δı2δj2 − δı1δj3). These result only in the term h42δı2 being added to the
result for j = l = 2 and h41δı2 being added to the result for j = 2, l = 1 which
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show using ı = 2 that h41 = h42 = 0.

∂u1

∂x1
− u2 = 0

∂u1

∂x2
− u3 = 0

∂u2

∂x1
+ ∂u3

∂x2
= 0

∂u2

∂x2
− ∂u3

∂x1
= 0

. (28)

Therefore there are no new results derivable from the system by one appli-
cation of the procedure indicated in [1] pages 2920-2921. Notice that in (28),
p = 3 and m = 4 so this is an overdetermined system but the above procedure
has come to an and there is no apparent inconsistency so there is something
unexpected happening in this system. The aıjk are now given by the following
4 matrices indexed by row ı and column j in each matrix k from 1 to 4:

a =

1 0
0 0
0 0

0 1
0 0
0 0

0 0
1 0
0 1

 0 0
0 1

−1 0

 (29)

Applying the next step of the analysis procedure proposed in [1] which is to
minimise the dimension of the space in which the equations can be expressed
gives that because all the coefficients aıjk are constant, all the Lie brackets
(commutators) of the differential operators

∑n
j=1 aıjk

∂
∂xj

(indexed by ı and k)

are zero and they span 2-dimensional space, there is no reduction of dimension
for independent variables. Looking for a reduced number of dependent vari-
ables gives [1] eq 32 i.e.

∑p
ı=1 dıaı{jk} = 0 so the rank of aıjk has to be analysed

after stacking the sub-matrices another way by combining the indices j and k
giving rank = 3 so there is no reduction and there are 3 dependent variables.

Applying “partial” minimisation of dimension, from (29) which is aıjk, the
matrix in (17) must be constructed thus g1 g2

g3 g4
−g4 g3

 . (30)

The condition that this has rank 1 determines conditions on linear combina-
tions g of the system giving g1g4 = g2g3, g1g3 = −g4g2, g

2
3 = −g24 so (g4 = ig3

and g2 = ig1) or (g4 = −ig3 and g2 = −ig1). Therefore the matrix has the two
forms so in this example m′ = 2. g1 ig1

g3 ig3
−ig3 g3

 (31)
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or  g1 −ig1
g3 −ig3
ig3 g3

 (32)

corresponding to g = (g1, ig1, g3, ig3) and (g1,−ig1, g3,−ig3) respectively. The
first of these gives two independent results corresponding to g = (1, i, 0, 0)
and g = (0, 0, 1, i) giving matrices proportional to (1, 0, 0)T and (0, 1, 1)T re-
spectively. Similarly for the second case g = (1,−i, 0, 0) and g = (0, 0, 1,−i)
gives rise to rank 1 matrices proportional to (1, 0, 0)T and (0, 1, 1)T respec-
tively. However linear combinations of g = (1, i, 0, 0) and g = (1,−i, 0, 0) also
give results proportional to (1, 0, 0)T but linear combinations of g = (0, 0, 1, i)
and g = (0, 0, 1,−i) do not give rise to a matrix of rank 1 unless one of the
coefficients is zero. This represents some complex structure implicit in (29)
that relates to the equivalent form presented below.

In the first case, there are two linear combinations that have r = 1:

u1,1 − u2 + i(u1,2 − u3) = 0
u2,1 + u3,2 + i(u2,2 − u3,1) = 0

(33)

using the abbreviation z,j for
∂z
∂xj

for any variable z which can be written as

du1

ds1
− u2 − iu3 = 0

du2

ds1
− idu3

ds1
= 0

(34)

where
d

ds1
=

∂

∂x1

+ i
∂

∂x2

(35)

to make its 1-dimensional status clear. The first of (33) can be integrated to
get u1 in terms of u2 and u3 while the second can be integrated to get u2 in
terms of u3 (or vice versa) along the same set of curves. Repeating this for the
second solution is just the same as (33) with i replaced by −i, in another set
of curves (actually in both cases they are straight lines in complex space)

du1

ds2
− u2 + iu3 = 0

du2

ds2
+ idu3

ds2
= 0

(36)

where
d

ds2
=

∂

∂x1

− i
∂

∂x2

(37)

so there are in total 4 linear combinations of the equations (28) which to-
gether span the complete 4 dimensional space of possible linear combinations
of the 4 equations in (28). This is an equivalent way of expressing the sys-
tem likely to be useful theoretically in deriving properties of the solution and
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possibly finding it numerically from appropriate boundary conditions by inte-
grating the equations as indicated and using an iterative method for solving
them starting from an initial estimate which is constant along a set of curves
that intersect the initial surface once each. The obvious choice of coordinate
system is now such that s2 constant in (35) and s1 is constant in (37). Then
the equations (34) and (36) can be written as

∂u1

∂s1
− u2 − iu3 = 0

∂u2

∂s1
− i∂u3

∂s1
= 0

}
∂u1

∂s2
− u2 + iu3 = 0

∂u2

∂s2
+ i∂u3

∂s2
= 0

} (38)

The first system with independent variable s1 can be integrated along lines
of constant s2 while the second system with independent variable s2 can be
integrated along lines of constant s1, and both systems must be solved simul-
taneously e.g. by iteration. The coordinate system requires the operators in
(35) and (37) to commute which is obviously the case and (37) gives s1 is con-
stant or 0 = ds1

ds2
= ∂s1

∂x1
+ ∂s1

∂x2

dx2

dx1
on lines given by dx2

dx1
= −i i.e. s1 = x2 + ix1.

Similarly s2 = x2 − ix1.
For these equations m = 4, n = 2 and p = 3 and if the procedure in

section 2 is applied again it shows that the matrices Bj are

B1 =

 1 0 0 0
0 1 0 0
0 −i 0 0

 , B2 =

 0 0 1 0
0 0 0 1
0 0 0 i

 , (39)

both having rank 2. The equations (7) reduce to h11 = h21 = h41 = h22 =
h32 = h42 = 0 and h12 + h31 = 0. Therefore the only equation arising from (3)
is

∂

∂s2

(
∂u1

∂s1
− u2 − iu3

)
− ∂

∂s1

(
∂u1

∂s2
− u2 + iu3

)
= 0 (40)

which reduces to a LC of (38).2 and (38).4 so this is an over-determined sys-
tem such that when the procedure above is applied it does not lead to an
inconsistency.

The equations (38) can be expressed only in terms of real variables by
splitting up the complex variables u1, u2, u3 into real and imaginary parts but
this seems to serve no purpose, just doubling the number of independent and
dependent variables.

The general solution of the system (38) can be obtained by integrating
(38).2 and (38).4 respectively giving

u2 − iu3 = f(s2)
u2 + iu3 = g(s1)

(41)
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where f() and g() are arbitrary functions, so

u2 =
1
2
(f(s2) + g(s1))

u3 =
1
2i
(−f(s2) + g(s1))

. (42)

Then equation (38).3 integrates to u1 =
∫ s2 dtf(t)+h(s1) where h() is also an

arbitrary function. This is consistent with equation (38).1 which integrates to
u1 =

∫ s1 dtg(t) + q(s2) where q() is also arbitrary and both together give

u(s1, s2) = h(s1) + q(s2) = h(x2 + ix1) + q(x2 − ix1). (43)

u should be real valued and x1 and x2 are real. Suppose u is real valued on
the real line, then h(x2) + q(x2) is real. This makes h() and q() functions of
a complex variable z = x2 + ix1. Clearly there must be some restriction on h
and q because otherwise put eg q = 0 then u = h(z) can equal any function
of ℜ(z) and ℑ(z) which this makes the solution quite arbitrary. If h() and q()
are analytic this problem is solved.

It is important to note that the CK theorem does not apply to this case
because the original equation the Laplace equation is elliptic.

Do a more complex example where aıjk are not constants.
(on this website www.bluesky-home.co.uk)
************ beyond here is old work - needs looking at again

5 Non-linear systems

In order to find first order PDEs for u derivable from

Fk(x,u,∇u) = 0 for 1 ≤ k ≤ m (44)

I look for linear combinations, with coefficients that can depend on (x,u,∇u) =
(x, u(1)), of all the first total (with respect to xi regarding u as fixed unknown
functions of x) derivatives of the Fk that do not involve second derivatives of
u. Linear combinations are considered because the second derivatives occur
only linearly in the first total derivatives. i.e. consider expressions

m∑
k=1

n∑
l=1

αkl(x,u
(1))

dFk

dxl

(45)

that are independent of second derivatives of u. This results in equations
corresponding to (37) for the α coefficients i.e.

m∑
k=1

[
αkl(x,u

(1))
∂Fk

∂ui,j

+ αkj(x,u
(1))

∂Fk

∂ui,l

]
= 0 for 1 ≤ j ≤ l ≤ n and 1 ≤ i ≤ p.

(46)
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Then for each linearly independent set of α satisfying this, the equation
sought derived from the original system (44) is

m∑
k=1

n∑
l=1

αkl(x,u
(1))

dFk

dxl

= 0 (47)

i.e. (45) equated to zero because the Fk and their total derivatives are all
identically zero for all solutions of the original system (44). Then a complete
set of linearly independent α satisfying the linear equation (46) will provide
a complete set of independent first order equations (47) derivable from the
original system by taking first derivatives only. Because there are pn(n+1)/2
equations for mn coefficents αkl, the case when the number of equations equals
the number of unknowns i.e. m = p implies that the number of equations for
the α exceeeds the number of α coeffients except when n = 1, thus if there is
more than one independent variable the equations (46) typically have only the
trivial solutions i.e. there are no extra integrability conditions. The derivatives
∂Fk

∂ui,j
can in any example be evaluated as functions of x,u,∇u have to be

treated as fixed constants in equations (46) and this system must be solved for
each point (x,u,∇u) separately.

However note that some linear combinations of the α can correspond to
some of the existing Fk, so it is not necessarily true that the number of linearly
independent solutions (A) for α is the number of independent new derived
Fk (B) to added to the system as the result of one step of the completion
procedure, in general A ≥ B. Example (27) of my paper with p = m = n = 2
shows this. Here a111 = 1, a211 = 1, a122 = 1, a222 = 1 and all the other
aijk = 0. The first completion step leads to α11 = α22 = 0 and α12 = −α21,
and the new equation

F3 = −u1,2 + u2,2 + u1,1 − u2,1 = 0. (48)

The second completion step (now with n = p = 2, and m = 3) starts with the
extended 3D array of coefficients having the extra values

a113 = 1 a213 = −1
a123 = −1 a223 = 1

(49)

and gives the second set of equations for the α which reduce to

α11 = α31 = 0
α12 + α21 = 0
α32 = α22 = 0.

(50)

This leads to no more solutions ie. no solutions that are not already equations
included in the system.
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(A) an example where no extra integrability conditions were needed (B
and C) An example where this has to be repeated to get all the integrability
conditions. Suppose the original system is

F1 ≡ (u1,1)
2 + u1u1,2 = 0

F2 ≡ u1 + x1u1,2 = 0
(51)

Then
∂F1

∂u1,1
= 2u1,1

∂F1

∂u1,2
= u1

∂F2

∂u1,1
= 0

∂F2

∂u1,2
= x1

(52)

Then there are just three equations for the α having i = 1 and respectively
(j, l) = (1, 1), (1, 2), (2, 2). These are easily shown to be

α1,1 = 0
2u1,1α1,2 + α2,1x1 = 0
α1,2u1 + α2,2x1 = 0

(53)

from which there is one linearly independent solution

α ≡ (α11, α12, α21, α22) =

(
0,−x1

u1

α22,
2u1,1

u1

α22, α22

)
. (54)

This, from (47), gives rise to the new derived equation which simplifies to

F3 ≡ −x1

u1

(u1,2)
2 +

2u2
1,1

u1

+ 2
u1,1u1,2

u1

+ u1,2 = 0 (55)

Now the system has m = 3, and when this procedure is repeated, there are
three more independent linear combinations of the total derivatives of F1, F2, F3

that are zero. There is clearly no point in going any further because from (51)
it follows that F3 = −2u1(x1)

−3/2 and equating it to zero gives u1 = 0 as
the only solution when x1 ̸= 0. This trivial example does however show that
more than one round of finding extra integrability conditions by this method
in general gives new results, and it should in general be repeated until no new
results are obtained.

(D) Searching for new independent variables to get reduced dimension r = 1
When searching for linear combinations that reduce the number of independent
variables, allow the coefficients to be dependent on x and u(1). Should combine
searching for new independent and dependent variables.

If for example r = 1, this is not much use unless p = 1.



Notes of systems of partial differential equations 17

The use of the Cauchy Riemann equations and analytic transformations.
Suppose u + iv is an analytic function of x + iy. Then the Cauchy Riemann
equations are

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x
(56)

Now suppose

z = f1(u, v). (57)

Then
∂z

∂x
=

∂z

∂u

∂u

∂x
− ∂z

∂v

∂u

∂y
(58)

and
∂z

∂y
=

∂z

∂u

∂u

∂y
+

∂z

∂v

∂u

∂x
(59)

The CR equations are formally reducible to r = 1, but the coefficients are
imaginary. Do in detail

For the general case where no simplifications are possible, one would ex-
pect that an iterative method leading to simultaneous convergence of u1 . . . up

starting from initial estimates that agree with the boundary conditions could
be used. If p = m this could be implemented by assigning each equation to a
member of the set of dependent variables. Then starting from their initial es-
timates, use each equation to update the associated variable using the current
values for all the other ones. This could be done by direct integration along
characteristics because the equation is first order in the single unknown being
calculated, and Monge’s method applies. By repeated cycling round doing this
for all the equations would give a scheme that could converge. This is what I
would call the ‘integrate and iterate’ strategy i.e. convert the ODE’s system to
integral equations of Volterra type by integration of both sides. Update each
variable in turn to hopefully get a set of such equations that can be solved by
iteration to convergence establishing existence and uniqueness of the solution.
This is a known general strategy to in principle solve a very wide class of dif-
ferential equations giving unique solutions. This should be seen in its most
general form. Need to show (1) The above method converges if sufficiently
good initial estimates are given. Then the solution converged to satisfies the
system of PDEs. Start by doing this for ODEs.

This establishes that the solution exists in a region. It may allow uniqueness
to be shown, or use the Cauchy Kovalevskaya theorem. The region in which
the solution is obtained is obviously the intersection of the regions determined
by the m sets of characteristics.

Show that the singular cases when some sets of characteristics coincide
correspond to the cases when minimisation of dimension leads to a lower di-
mensional problem as defined above.
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∂Fk

∂ui,j
as directions for integration of Monge Equations for ui assuming all

the other u are their final values in an iteration.
C.K. theorem for first order systems: (adaptation of argument in P.Olver)
Suppose the transformed system is written with one special independent

variable, which I call t, and the others y1 . . . yn−1,

F ∗
k (t, y1, . . . yn−1,u

(1)) = 0 for 1 ≤ k ≤ m. (60)

This can be solved for derivatives with respect to t i.e.

∂uk

∂t
= Hk

(
t, y1, . . . yn−1,

∂u

∂y1
, . . .

∂u

∂yn−1

)
for 1 ≤ k ≤ m. (61)

for which the C.K. theorem applies iff

det

(
∂F ∗

k

∂(∂u
∂t
)

)
̸= 0 (62)

Using the change of variable, this matrix can be written as follows

∂F ∗
k

∂
(
∂ui

∂t

) =
∑
l

∂Fk

∂ui,l

∂ui,l

∂
(
∂ui

∂t

) (63)

where using the chain rule for the change of variables, the last term simplifies
to ∂t

∂xl
.

Therefore the C.K. theorem applies giving a unique solution to the bound-
ary value problem iff

det

(
n∑

l=1

∂Fk

∂ui,l

wl

)
̸= 0 (64)

where w = ∇t is perpendicular to the initial surface. This condition can be
written as ∑

p

m∏
k=1

(
n∑

lk=1

∂Fk

∂up(k),lk

wk

)
(−1)sign(p). (65)

This can be further expanded as a condition involving a polynomial in the
components w as follows

n∑
l1=1

. . .
n∑

lm=1

wl1 . . . wlm

(∑
p

(−1)sign(p)
∂F1

∂up(1),l1

. . .
∂Fm

∂up(m),lm

)
= 0 (66)

From this it follows that after fixing w1, . . . wn−1, this is a single algebraic
equation for wn of degree m with coefficients that depend on ∂Fk

∂ui,l
, so this has

up to m real solutions and most vectors w don’t satisfy this condition. The
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vectors w satisfying this clearly are not typically a linear space but each w can
always be multiplied by a scalar to get another solution, so I call the solutions
sets at each point cones. For the nonlinear case, the cone will depend on the
unknown u itself, and even in the linear case it will in general be dependent
on x.

Are integrability conditions a consequence of this degeneracy too?

If m > p in general there will not be a solution to the boundary value
problem. Solutions with smaller dimensional boundaries might be possible.

About the simplest possible example is the Cauchy Riemann equations
which shows that this simple idea can run into problems. Use equation 1 to
calculate u from v by integrating along lines parallel to the x axis, or calculate
v from u by integrating ... y axis. Using equation 2 calculate u from v integrate
parallel to the y axis 2 calculate v from u integrate parallel to the x axis

The problem here is that the calculation u → v by equation (1) and the
calculation v → u by equation (2) give characteristics that are parallel, and
likewise for the other way round.

For minimisation of the number of independent variables resulting in (55)
and (56) to r, the three-dimensional array G with dimensions m× p× n must
satisfy

Rank

(
Mij =

m∑
k=1

Gkijhk

)
= r (67)

for some h. Requiring r = 1 for just one linear combination h would impose
pn− p−n+1 conditions on M because n+ p+1 parameters uniquely specify
a p× n matrix of rank 1. Therefore there will not in general be a reduction to
r = 1 for even a single linear combination of the equations. However if it does
happen for a single linear combination, the equations (55) (n) and the second
member of (56) after eliminating bij (p) can be in principle be integrated from
the boundary (if appropriate boundary conditions are given) and allow one
of the unknowns to be eliminated by back-substitution of the result into the
original system.

Show how the new variables are constructed to do this.

Given a system of PDE and a surface S, what conditions are imposed by the
system within S? Possible answers: (1) no condition i.e. u is unrestricted (2)
There are no solutions for u so any conditions could be added (vacuously).(3)
There could be some conditions.

This question is answered by the minimisation of dimension argument,
because such restrictions, if present, would be systems of PDEs defined within
S. So if a minimised dimension result was found within S, it must be included,
and S is a characteristic surface, otherwise none are possible, and S is a non-
characteristic surface.

Dependence of r on x. It is not necessarily true that regions of different
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r (dimension of the Lie algebra generated by the fi at a point) correspond to
integral surfaces. If a region of dimension < n with tangent space X a point
is identified having a given value of r for a L.C. of the system, the space Y
spanned by the L.I. vectors from the completion of the fi does not necessarily
relate to X. If Y ⊆ X it is possible to write an equation in the reduced
dimension in a nbd. of the point. Otherwise it won’t work. This is another
integrability condition I. In general the partial function

r(x) =

{
r if I(x)

undefined if Ĩ(x)
(68)

detefines the effective reduced dimension for a L.C. of the original system.
From the general theory point of view, thinking of any variables complex is

unnecessary because any such system can be written using the real and imag-
inary parts separately and adding the Cauchy Riemann equations if analytic
solutions are wanted. Thus the new system equivalent to the system where
complex or analytic solutions is sought, has only real solutions, coefficients
and boundary conditions only. Indeed it would be possible to take the re-
sulting system defined above and intepret the variables as complex and again
represent everything in terms of real variables. This is clearly unnecessary
”complexification”.

The general problem for determined systems (p = m) is to establish exis-
tence and uniqueness of solutions in a region containing the initial data. The
basic theorem for this is the Cauchy Kovalevskaya (CK) theorem. One way
to imagine how the solution might be constructed is to start with initial es-
timates of u1, . . . um consistent with the initial data then sequentially update
u1, u2, . . . um. For each of these m updates one equation of the system is used,
so that they are each used once. Thus each equation of the system is a single
first order PDE for the single unknown with all the other ones replaced by
their current values. Thus Monge’s method of integral strips applies. Once a
variable has been updated, this updated value is used in all subsequent calcu-
lations until it is updated again. The cycle of updates should be repeated to
convergence to any desired degree of accuracy. Gkij is the direction vector with
components indexed by j for the propagation of ui obtained from equation k,
i.e. m2 vectors in n dimensions. Attempts to prove that this converges in
analogy with the Picard theorem for ODE’s failed because it is nor clear what
analogue of the Lipschitz condition or metric could be used that would give
rise to a unique fixed point. The problem comes from the derivatives of all the
variables in the equations.

With the CK theorem in mind, reductions of dimension that are possible
should be seen as singular cases that are exceptional and if they occur, special
techniques are needed (minimisation of dimension together with adding in the
integrability conditions).
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It is possible that different conditions occur in different regions of the space
of independent variables. For the CK theorem I think no partial reductions of
dimension should be possible on the initial surface i.e. all the directions for
integrating each variable (at convergence i.e. when all the variables are known)
lead out of the initial surface. Were they not to do so the initial surface could
not have independently defined data, i.e. some extra conditions would have to
be satisfied.
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